发射率
电子设备和系统的热管理
消散
低发射率
材料科学
热辐射
热的
热舒适性
保温
辐射传输
环境科学
光电子学
机械工程
复合材料
光学
物理
热力学
工程类
图层(电子)
作者
Xiansheng Li,Meiling Liu,Ken Chen,Lanxin Li,Gang Pei,Bin Zhao
出处
期刊:Nanophotonics
[De Gruyter]
日期:2024-05-31
卷期号:13 (17): 3067-3075
标识
DOI:10.1515/nanoph-2023-0930
摘要
Abstract The heat generation of the human body dramatically varies between resting and active status, so dynamic heat dissipation is required to ensure optimal thermal comfort. Herein, we propose a spectrally self-adaptive smart fabric (SSSF) by covering polyester fabric with silver nanowires, which autonomously adjusts its emissivity in response to the body’s movement status from dry to wet states. During periods of inactivity, the SSSF maintains radiative heat insulation with a low emissivity state of 0.39. Conversely, during vigorous physical activity, its emissivity is improved to 0.83 when the sweat penetrates the SSSF, facilitating greater heat dissipation. Comparative experiments demonstrate the superior thermal management capabilities of the SSSF, with a 19.5 % reduction in heat dissipation power relative to traditional fabrics when in the low emissivity mode, and an impressive 67.6 % enhancement in heat dissipation power as it changes from low to high emissivity mode. This work provides an adaptive approach to emissivity modulation, offering an effective solution for dynamic heat dissipation of humans across various states of activity, thereby enhancing personal thermal comfort.
科研通智能强力驱动
Strongly Powered by AbleSci AI