清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning for Echo Analysis, Tracking, and Evaluation of Mitral Regurgitation (DELINEATE-MR)

医学 Echo(通信协议) 二尖瓣反流 心脏病学 功能性二尖瓣反流 内科学 心力衰竭 计算机科学 射血分数 计算机安全
作者
Aaron S. Long,Christopher M. Haggerty,Joshua Finer,Dustin N. Hartzel,Linyuan Jing,A. Keivani,Chris R. Kelsey,Daniel Rocha,Jeffrey Ruhl,David P. vanMaanen,Gil Metser,Eamon Duffy,Thomas Mawson,Mathew S. Maurer,Andrew J. Einstein,Ashley Beecy,Deepa Kumaraiah,Shunichi Homma,Qi Liu,Vratika Agarwal,Mark Lebehn,Martin Leon,Rebecca T. Hahn,Pierre Elias,Timothy J. Poterucha
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:150 (12): 911-922 被引量:3
标识
DOI:10.1161/circulationaha.124.068996
摘要

BACKGROUND: Artificial intelligence, particularly deep learning (DL), has immense potential to improve the interpretation of transthoracic echocardiography (TTE). Mitral regurgitation (MR) is the most common valvular heart disease and presents unique challenges for DL, including the integration of multiple video-level assessments into a final study-level classification. METHODS: A novel DL system was developed to intake complete TTEs, identify color MR Doppler videos, and determine MR severity on a 4-step ordinal scale (none/trace, mild, moderate, and severe) using the reading cardiologist as a reference standard. This DL system was tested in internal and external test sets with performance assessed by agreement with the reading cardiologist, weighted κ, and area under the receiver-operating characteristic curve for binary classification of both moderate or greater and severe MR. In addition to the primary 4-step model, a 6-step MR assessment model was studied with the addition of the intermediate MR classes of mild-moderate and moderate-severe with performance assessed by both exact agreement and ±1 step agreement with the clinical MR interpretation. RESULTS: A total of 61 689 TTEs were split into train (n=43 811), validation (n=8891), and internal test (n=8987) sets with an additional external test set of 8208 TTEs. The model had high performance in MR classification in internal (exact accuracy, 82%; κ=0.84; area under the receiver-operating characteristic curve, 0.98 for moderate or greater MR) and external test sets (exact accuracy, 79%; κ=0.80; area under the receiver-operating characteristic curve, 0.98 for moderate or greater MR). Most (63% internal and 66% external) misclassification disagreements were between none/trace and mild MR. MR classification accuracy was slightly higher using multiple TTE views (accuracy, 82%) than with only apical 4-chamber views (accuracy, 80%). In subset analyses, the model was accurate in the classification of both primary and secondary MR with slightly lower performance in cases of eccentric MR. In the analysis of the 6-step classification system, the exact accuracy was 80% and 76% with a ±1 step agreement of 99% and 98% in the internal and external test set, respectively. CONCLUSIONS: This end-to-end DL system can intake entire echocardiogram studies to accurately classify MR severity and may be useful in helping clinicians refine MR assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tty应助耍酷平凡采纳,获得30
8秒前
小宇宙完成签到,获得积分10
24秒前
如泣草芥完成签到,获得积分0
45秒前
111完成签到 ,获得积分10
53秒前
桐桐应助科研通管家采纳,获得10
1分钟前
萝卜猪完成签到,获得积分10
1分钟前
jlwang完成签到,获得积分10
1分钟前
孙老师完成签到 ,获得积分10
1分钟前
hyxu678完成签到,获得积分10
2分钟前
lily完成签到 ,获得积分10
2分钟前
PeterLin完成签到,获得积分10
2分钟前
科研通AI5应助PeterLin采纳,获得30
2分钟前
追风少年完成签到 ,获得积分10
3分钟前
3分钟前
百里幻竹发布了新的文献求助10
3分钟前
一自文又欠完成签到 ,获得积分10
3分钟前
X519664508完成签到,获得积分0
3分钟前
刘刘完成签到 ,获得积分10
3分钟前
4分钟前
廖梦琪完成签到 ,获得积分10
4分钟前
chcmy完成签到 ,获得积分0
4分钟前
4分钟前
lanxinge完成签到 ,获得积分10
4分钟前
淡淡醉波wuliao完成签到 ,获得积分10
5分钟前
攀攀完成签到 ,获得积分10
5分钟前
woxinyouyou完成签到,获得积分0
5分钟前
LeoBigman完成签到 ,获得积分10
5分钟前
感动清炎发布了新的文献求助10
6分钟前
Ava应助科研通管家采纳,获得10
7分钟前
卡卡罗特先森完成签到 ,获得积分10
7分钟前
波西米亚完成签到,获得积分10
8分钟前
wuhu完成签到 ,获得积分10
8分钟前
迅速的幻雪完成签到 ,获得积分10
8分钟前
huanghe完成签到,获得积分10
9分钟前
香蕉觅云应助百里幻竹采纳,获得10
10分钟前
勤劳的颤完成签到 ,获得积分10
10分钟前
10分钟前
百里幻竹发布了新的文献求助10
10分钟前
coolplex完成签到 ,获得积分10
10分钟前
薛家泰完成签到 ,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582701
求助须知:如何正确求助?哪些是违规求助? 4000325
关于积分的说明 12382353
捐赠科研通 3675425
什么是DOI,文献DOI怎么找? 2025834
邀请新用户注册赠送积分活动 1059487
科研通“疑难数据库(出版商)”最低求助积分说明 946158