Deep Learning for Echo Analysis, Tracking, and Evaluation of Mitral Regurgitation (DELINEATE-MR)

医学 Echo(通信协议) 二尖瓣反流 心脏病学 功能性二尖瓣反流 内科学 心力衰竭 计算机科学 射血分数 计算机安全
作者
Aaron S. Long,Christopher M. Haggerty,Joshua Finer,Dustin N. Hartzel,Linyuan Jing,A. Keivani,Chris R. Kelsey,Daniel Rocha,Jeffrey Ruhl,David P. vanMaanen,Gil Metser,Eamon Duffy,Thomas Mawson,Mathew S. Maurer,Andrew J. Einstein,Ashley Beecy,Deepa Kumaraiah,Shunichi Homma,Qi Liu,Vratika Agarwal,Mark Lebehn,Martin Leon,Rebecca T. Hahn,Pierre Elias,Timothy J. Poterucha
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:150 (12): 911-922 被引量:3
标识
DOI:10.1161/circulationaha.124.068996
摘要

BACKGROUND: Artificial intelligence, particularly deep learning (DL), has immense potential to improve the interpretation of transthoracic echocardiography (TTE). Mitral regurgitation (MR) is the most common valvular heart disease and presents unique challenges for DL, including the integration of multiple video-level assessments into a final study-level classification. METHODS: A novel DL system was developed to intake complete TTEs, identify color MR Doppler videos, and determine MR severity on a 4-step ordinal scale (none/trace, mild, moderate, and severe) using the reading cardiologist as a reference standard. This DL system was tested in internal and external test sets with performance assessed by agreement with the reading cardiologist, weighted κ, and area under the receiver-operating characteristic curve for binary classification of both moderate or greater and severe MR. In addition to the primary 4-step model, a 6-step MR assessment model was studied with the addition of the intermediate MR classes of mild-moderate and moderate-severe with performance assessed by both exact agreement and ±1 step agreement with the clinical MR interpretation. RESULTS: A total of 61 689 TTEs were split into train (n=43 811), validation (n=8891), and internal test (n=8987) sets with an additional external test set of 8208 TTEs. The model had high performance in MR classification in internal (exact accuracy, 82%; κ=0.84; area under the receiver-operating characteristic curve, 0.98 for moderate or greater MR) and external test sets (exact accuracy, 79%; κ=0.80; area under the receiver-operating characteristic curve, 0.98 for moderate or greater MR). Most (63% internal and 66% external) misclassification disagreements were between none/trace and mild MR. MR classification accuracy was slightly higher using multiple TTE views (accuracy, 82%) than with only apical 4-chamber views (accuracy, 80%). In subset analyses, the model was accurate in the classification of both primary and secondary MR with slightly lower performance in cases of eccentric MR. In the analysis of the 6-step classification system, the exact accuracy was 80% and 76% with a ±1 step agreement of 99% and 98% in the internal and external test set, respectively. CONCLUSIONS: This end-to-end DL system can intake entire echocardiogram studies to accurately classify MR severity and may be useful in helping clinicians refine MR assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
Wing完成签到 ,获得积分10
1秒前
R先生发布了新的文献求助10
1秒前
科研小白发布了新的文献求助10
1秒前
年三月完成签到 ,获得积分10
2秒前
lb完成签到,获得积分20
2秒前
2秒前
香蕉觅云应助叶飞荷采纳,获得10
3秒前
flow发布了新的文献求助10
4秒前
穆仰应助li采纳,获得10
4秒前
班尼肥鸭完成签到 ,获得积分10
4秒前
噔噔噔噔发布了新的文献求助10
4秒前
bkagyin应助ffff采纳,获得10
4秒前
000完成签到,获得积分10
4秒前
4秒前
Anxinxin发布了新的文献求助20
5秒前
5秒前
Ych完成签到,获得积分20
6秒前
lai发布了新的文献求助10
6秒前
彭彭发布了新的文献求助10
6秒前
ggb完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
迅速宛筠完成签到,获得积分10
7秒前
弄井完成签到,获得积分10
8秒前
充电宝应助无悔呀采纳,获得10
8秒前
8秒前
9秒前
000发布了新的文献求助10
9秒前
噔噔噔噔完成签到,获得积分10
10秒前
11秒前
刘怀蕊发布了新的文献求助10
12秒前
舒心赛凤发布了新的文献求助10
12秒前
文艺明杰完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762