亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning for Echo Analysis, Tracking, and Evaluation of Mitral Regurgitation (DELINEATE-MR)

医学 Echo(通信协议) 二尖瓣反流 心脏病学 功能性二尖瓣反流 内科学 心力衰竭 计算机科学 射血分数 计算机安全
作者
Aaron S. Long,Christopher M. Haggerty,Joshua Finer,Dustin N. Hartzel,Linyuan Jing,A. Keivani,Chris R. Kelsey,Daniel Rocha,Jeffrey Ruhl,David P. vanMaanen,Gil Metser,Eamon Duffy,Thomas Mawson,Mathew S. Maurer,Andrew J. Einstein,Ashley Beecy,Deepa Kumaraiah,Shunichi Homma,Qi Liu,Vratika Agarwal,Mark Lebehn,Martin Leon,Rebecca T. Hahn,Pierre Elias,Timothy J. Poterucha
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:150 (12): 911-922 被引量:3
标识
DOI:10.1161/circulationaha.124.068996
摘要

BACKGROUND: Artificial intelligence, particularly deep learning (DL), has immense potential to improve the interpretation of transthoracic echocardiography (TTE). Mitral regurgitation (MR) is the most common valvular heart disease and presents unique challenges for DL, including the integration of multiple video-level assessments into a final study-level classification. METHODS: A novel DL system was developed to intake complete TTEs, identify color MR Doppler videos, and determine MR severity on a 4-step ordinal scale (none/trace, mild, moderate, and severe) using the reading cardiologist as a reference standard. This DL system was tested in internal and external test sets with performance assessed by agreement with the reading cardiologist, weighted κ, and area under the receiver-operating characteristic curve for binary classification of both moderate or greater and severe MR. In addition to the primary 4-step model, a 6-step MR assessment model was studied with the addition of the intermediate MR classes of mild-moderate and moderate-severe with performance assessed by both exact agreement and ±1 step agreement with the clinical MR interpretation. RESULTS: A total of 61 689 TTEs were split into train (n=43 811), validation (n=8891), and internal test (n=8987) sets with an additional external test set of 8208 TTEs. The model had high performance in MR classification in internal (exact accuracy, 82%; κ=0.84; area under the receiver-operating characteristic curve, 0.98 for moderate or greater MR) and external test sets (exact accuracy, 79%; κ=0.80; area under the receiver-operating characteristic curve, 0.98 for moderate or greater MR). Most (63% internal and 66% external) misclassification disagreements were between none/trace and mild MR. MR classification accuracy was slightly higher using multiple TTE views (accuracy, 82%) than with only apical 4-chamber views (accuracy, 80%). In subset analyses, the model was accurate in the classification of both primary and secondary MR with slightly lower performance in cases of eccentric MR. In the analysis of the 6-step classification system, the exact accuracy was 80% and 76% with a ±1 step agreement of 99% and 98% in the internal and external test set, respectively. CONCLUSIONS: This end-to-end DL system can intake entire echocardiogram studies to accurately classify MR severity and may be useful in helping clinicians refine MR assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
和谐蛋蛋完成签到,获得积分10
4秒前
平淡的依白完成签到,获得积分20
6秒前
善学以致用应助尹恩惠采纳,获得10
8秒前
清爽夜雪发布了新的文献求助10
8秒前
8秒前
浓浓完成签到 ,获得积分10
9秒前
9秒前
9秒前
LH完成签到,获得积分10
11秒前
木卫二完成签到 ,获得积分10
11秒前
kiki发布了新的文献求助10
14秒前
吧唧吧唧发布了新的文献求助10
15秒前
16秒前
勤恳冰淇淋完成签到 ,获得积分10
19秒前
CodeCraft应助张张采纳,获得10
24秒前
22222发布了新的文献求助30
25秒前
清爽夜雪发布了新的文献求助10
26秒前
乐乐应助kiki采纳,获得10
32秒前
888发布了新的文献求助30
32秒前
甜甜的冷霜完成签到,获得积分10
33秒前
35秒前
xiaochao完成签到,获得积分10
35秒前
GingerF完成签到 ,获得积分0
39秒前
星落枝头发布了新的文献求助10
40秒前
清爽夜雪完成签到,获得积分10
41秒前
42秒前
明人不放暗屁完成签到 ,获得积分10
42秒前
科研小趴菜完成签到 ,获得积分10
43秒前
45秒前
46秒前
123456完成签到,获得积分10
47秒前
一二完成签到 ,获得积分10
49秒前
50秒前
123456发布了新的文献求助10
51秒前
科研通AI5应助机灵的成协采纳,获得10
52秒前
Bell完成签到,获得积分10
54秒前
研友_VZG7GZ应助酷炫的面包采纳,获得10
55秒前
金鱼发布了新的文献求助10
57秒前
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126569
求助须知:如何正确求助?哪些是违规求助? 4330013
关于积分的说明 13492609
捐赠科研通 4165224
什么是DOI,文献DOI怎么找? 2283306
邀请新用户注册赠送积分活动 1284279
关于科研通互助平台的介绍 1223910