Deep Learning for Echo Analysis, Tracking, and Evaluation of Mitral Regurgitation (DELINEATE-MR)

医学 Echo(通信协议) 二尖瓣反流 心脏病学 功能性二尖瓣反流 内科学 心力衰竭 计算机科学 射血分数 计算机安全
作者
Aaron S. Long,Christopher M. Haggerty,Joshua Finer,Dustin N. Hartzel,Linyuan Jing,A. Keivani,Chris R. Kelsey,Daniel Rocha,Jeffrey Ruhl,David P. vanMaanen,Gil Metser,Eamon Duffy,Thomas Mawson,Mathew S. Maurer,Andrew J. Einstein,Ashley Beecy,Deepa Kumaraiah,Shunichi Homma,Qi Liu,Vratika Agarwal,Mark Lebehn,Martin Leon,Rebecca T. Hahn,Pierre Elias,Timothy J. Poterucha
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:150 (12): 911-922 被引量:2
标识
DOI:10.1161/circulationaha.124.068996
摘要

BACKGROUND: Artificial intelligence, particularly deep learning (DL), has immense potential to improve the interpretation of transthoracic echocardiography (TTE). Mitral regurgitation (MR) is the most common valvular heart disease and presents unique challenges for DL, including the integration of multiple video-level assessments into a final study-level classification. METHODS: A novel DL system was developed to intake complete TTEs, identify color MR Doppler videos, and determine MR severity on a 4-step ordinal scale (none/trace, mild, moderate, and severe) using the reading cardiologist as a reference standard. This DL system was tested in internal and external test sets with performance assessed by agreement with the reading cardiologist, weighted κ, and area under the receiver-operating characteristic curve for binary classification of both moderate or greater and severe MR. In addition to the primary 4-step model, a 6-step MR assessment model was studied with the addition of the intermediate MR classes of mild-moderate and moderate-severe with performance assessed by both exact agreement and ±1 step agreement with the clinical MR interpretation. RESULTS: A total of 61 689 TTEs were split into train (n=43 811), validation (n=8891), and internal test (n=8987) sets with an additional external test set of 8208 TTEs. The model had high performance in MR classification in internal (exact accuracy, 82%; κ=0.84; area under the receiver-operating characteristic curve, 0.98 for moderate or greater MR) and external test sets (exact accuracy, 79%; κ=0.80; area under the receiver-operating characteristic curve, 0.98 for moderate or greater MR). Most (63% internal and 66% external) misclassification disagreements were between none/trace and mild MR. MR classification accuracy was slightly higher using multiple TTE views (accuracy, 82%) than with only apical 4-chamber views (accuracy, 80%). In subset analyses, the model was accurate in the classification of both primary and secondary MR with slightly lower performance in cases of eccentric MR. In the analysis of the 6-step classification system, the exact accuracy was 80% and 76% with a ±1 step agreement of 99% and 98% in the internal and external test set, respectively. CONCLUSIONS: This end-to-end DL system can intake entire echocardiogram studies to accurately classify MR severity and may be useful in helping clinicians refine MR assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助flyxga870825采纳,获得10
1秒前
李爱国应助flyxga870825采纳,获得10
1秒前
CH应助一一得一采纳,获得20
1秒前
大萱发布了新的文献求助10
2秒前
cyhccc发布了新的文献求助10
2秒前
薰硝壤应助可耐的Gamma采纳,获得10
2秒前
迷路曼彤完成签到 ,获得积分10
3秒前
3秒前
541完成签到,获得积分10
4秒前
jianxin发布了新的文献求助20
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
7秒前
sylinmm完成签到,获得积分10
8秒前
徐佳乐发布了新的文献求助10
8秒前
65146518完成签到,获得积分20
9秒前
9秒前
King完成签到,获得积分10
9秒前
科研通AI2S应助123采纳,获得10
9秒前
科研通AI2S应助123采纳,获得10
9秒前
顾北发布了新的文献求助10
9秒前
刘叶发布了新的文献求助10
10秒前
fg发布了新的文献求助10
10秒前
zyr应助Yinxi采纳,获得10
11秒前
小X发布了新的文献求助10
12秒前
Owen应助zhaof采纳,获得10
12秒前
wasiwan完成签到,获得积分10
14秒前
wangwang完成签到,获得积分10
15秒前
ccai完成签到 ,获得积分10
15秒前
小马甲应助王小宝采纳,获得10
16秒前
可靠的书桃应助ryan采纳,获得10
16秒前
小二郎应助叶耶耶采纳,获得10
16秒前
打打应助奇奇采纳,获得10
16秒前
17秒前
plain完成签到,获得积分10
17秒前
华仔应助极品小亮采纳,获得10
18秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135928
求助须知:如何正确求助?哪些是违规求助? 2786670
关于积分的说明 7779194
捐赠科研通 2442969
什么是DOI,文献DOI怎么找? 1298748
科研通“疑难数据库(出版商)”最低求助积分说明 625219
版权声明 600870