已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning for Echo Analysis, Tracking, and Evaluation of Mitral Regurgitation (DELINEATE-MR)

医学 Echo(通信协议) 二尖瓣反流 心脏病学 功能性二尖瓣反流 内科学 心力衰竭 计算机科学 射血分数 计算机安全
作者
Aaron S. Long,Christopher M. Haggerty,Joshua Finer,Dustin N. Hartzel,Linyuan Jing,A. Keivani,Chris R. Kelsey,Daniel Rocha,Jeffrey Ruhl,David P. vanMaanen,Gil Metser,Eamon Duffy,Thomas Mawson,Mathew S. Maurer,Andrew J. Einstein,Ashley Beecy,Deepa Kumaraiah,Shunichi Homma,Qi Liu,Vratika Agarwal,Mark Lebehn,Martin Leon,Rebecca T. Hahn,Pierre Elias,Timothy J. Poterucha
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:150 (12): 911-922 被引量:3
标识
DOI:10.1161/circulationaha.124.068996
摘要

BACKGROUND: Artificial intelligence, particularly deep learning (DL), has immense potential to improve the interpretation of transthoracic echocardiography (TTE). Mitral regurgitation (MR) is the most common valvular heart disease and presents unique challenges for DL, including the integration of multiple video-level assessments into a final study-level classification. METHODS: A novel DL system was developed to intake complete TTEs, identify color MR Doppler videos, and determine MR severity on a 4-step ordinal scale (none/trace, mild, moderate, and severe) using the reading cardiologist as a reference standard. This DL system was tested in internal and external test sets with performance assessed by agreement with the reading cardiologist, weighted κ, and area under the receiver-operating characteristic curve for binary classification of both moderate or greater and severe MR. In addition to the primary 4-step model, a 6-step MR assessment model was studied with the addition of the intermediate MR classes of mild-moderate and moderate-severe with performance assessed by both exact agreement and ±1 step agreement with the clinical MR interpretation. RESULTS: A total of 61 689 TTEs were split into train (n=43 811), validation (n=8891), and internal test (n=8987) sets with an additional external test set of 8208 TTEs. The model had high performance in MR classification in internal (exact accuracy, 82%; κ=0.84; area under the receiver-operating characteristic curve, 0.98 for moderate or greater MR) and external test sets (exact accuracy, 79%; κ=0.80; area under the receiver-operating characteristic curve, 0.98 for moderate or greater MR). Most (63% internal and 66% external) misclassification disagreements were between none/trace and mild MR. MR classification accuracy was slightly higher using multiple TTE views (accuracy, 82%) than with only apical 4-chamber views (accuracy, 80%). In subset analyses, the model was accurate in the classification of both primary and secondary MR with slightly lower performance in cases of eccentric MR. In the analysis of the 6-step classification system, the exact accuracy was 80% and 76% with a ±1 step agreement of 99% and 98% in the internal and external test set, respectively. CONCLUSIONS: This end-to-end DL system can intake entire echocardiogram studies to accurately classify MR severity and may be useful in helping clinicians refine MR assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
共享精神应助利物鸟贝拉采纳,获得10
1秒前
hzx完成签到,获得积分10
2秒前
1073980795发布了新的文献求助10
2秒前
3秒前
华仔应助BaBa采纳,获得10
4秒前
MoonYC发布了新的文献求助10
4秒前
默默洋葱发布了新的文献求助30
6秒前
可爱的函函应助莫里亚蒂采纳,获得10
7秒前
田様应助hzx采纳,获得10
11秒前
Ahiterin完成签到,获得积分10
12秒前
小二郎应助JhKe采纳,获得10
17秒前
丘比特应助幽梦挽歌采纳,获得10
18秒前
深情安青应助1073980795采纳,获得10
18秒前
18秒前
完美世界应助灰原采纳,获得10
21秒前
默默洋葱完成签到,获得积分10
22秒前
ll完成签到 ,获得积分10
24秒前
zhan发布了新的文献求助10
24秒前
彭于晏应助科研通管家采纳,获得10
25秒前
orixero应助科研通管家采纳,获得10
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
25秒前
Orange应助科研通管家采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
千跃应助科研通管家采纳,获得20
25秒前
领导范儿应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
27秒前
不加香菜完成签到 ,获得积分10
29秒前
30秒前
二七发布了新的文献求助10
30秒前
幽梦挽歌发布了新的文献求助10
32秒前
风中巧曼发布了新的文献求助10
32秒前
何1完成签到 ,获得积分10
33秒前
33秒前
充电宝应助Chalo采纳,获得10
34秒前
hsr_eye发布了新的文献求助10
34秒前
科研通AI5应助芯之痕采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976512
求助须知:如何正确求助?哪些是违规求助? 3520548
关于积分的说明 11203949
捐赠科研通 3257210
什么是DOI,文献DOI怎么找? 1798648
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806555