Deep Learning for Echo Analysis, Tracking, and Evaluation of Mitral Regurgitation (DELINEATE-MR)

医学 Echo(通信协议) 二尖瓣反流 心脏病学 功能性二尖瓣反流 内科学 心力衰竭 计算机科学 射血分数 计算机安全
作者
Aaron S. Long,Christopher M. Haggerty,Joshua Finer,Dustin N. Hartzel,Linyuan Jing,A. Keivani,Chris R. Kelsey,Daniel Rocha,Jeffrey Ruhl,David P. vanMaanen,Gil Metser,Eamon Duffy,Thomas Mawson,Mathew S. Maurer,Andrew J. Einstein,Ashley Beecy,Deepa Kumaraiah,Shunichi Homma,Qi Liu,Vratika Agarwal,Mark Lebehn,Martin Leon,Rebecca T. Hahn,Pierre Elias,Timothy J. Poterucha
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:150 (12): 911-922 被引量:3
标识
DOI:10.1161/circulationaha.124.068996
摘要

BACKGROUND: Artificial intelligence, particularly deep learning (DL), has immense potential to improve the interpretation of transthoracic echocardiography (TTE). Mitral regurgitation (MR) is the most common valvular heart disease and presents unique challenges for DL, including the integration of multiple video-level assessments into a final study-level classification. METHODS: A novel DL system was developed to intake complete TTEs, identify color MR Doppler videos, and determine MR severity on a 4-step ordinal scale (none/trace, mild, moderate, and severe) using the reading cardiologist as a reference standard. This DL system was tested in internal and external test sets with performance assessed by agreement with the reading cardiologist, weighted κ, and area under the receiver-operating characteristic curve for binary classification of both moderate or greater and severe MR. In addition to the primary 4-step model, a 6-step MR assessment model was studied with the addition of the intermediate MR classes of mild-moderate and moderate-severe with performance assessed by both exact agreement and ±1 step agreement with the clinical MR interpretation. RESULTS: A total of 61 689 TTEs were split into train (n=43 811), validation (n=8891), and internal test (n=8987) sets with an additional external test set of 8208 TTEs. The model had high performance in MR classification in internal (exact accuracy, 82%; κ=0.84; area under the receiver-operating characteristic curve, 0.98 for moderate or greater MR) and external test sets (exact accuracy, 79%; κ=0.80; area under the receiver-operating characteristic curve, 0.98 for moderate or greater MR). Most (63% internal and 66% external) misclassification disagreements were between none/trace and mild MR. MR classification accuracy was slightly higher using multiple TTE views (accuracy, 82%) than with only apical 4-chamber views (accuracy, 80%). In subset analyses, the model was accurate in the classification of both primary and secondary MR with slightly lower performance in cases of eccentric MR. In the analysis of the 6-step classification system, the exact accuracy was 80% and 76% with a ±1 step agreement of 99% and 98% in the internal and external test set, respectively. CONCLUSIONS: This end-to-end DL system can intake entire echocardiogram studies to accurately classify MR severity and may be useful in helping clinicians refine MR assessments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
陈咪咪完成签到,获得积分10
刚刚
one发布了新的文献求助10
1秒前
共享精神应助挡挡采纳,获得10
2秒前
li完成签到,获得积分10
2秒前
hbu123完成签到,获得积分10
3秒前
像只猫发布了新的文献求助10
3秒前
能干妙竹发布了新的文献求助10
3秒前
3秒前
4秒前
light发布了新的文献求助10
5秒前
5秒前
5秒前
gmjinfeng完成签到,获得积分0
5秒前
li发布了新的文献求助10
6秒前
wzt完成签到,获得积分10
6秒前
7秒前
8秒前
LSY完成签到 ,获得积分10
9秒前
鹤昀完成签到,获得积分10
9秒前
10秒前
10秒前
mingyu发布了新的文献求助10
11秒前
xiu发布了新的文献求助10
12秒前
华仔应助asdf采纳,获得10
13秒前
善良的疯丫头完成签到,获得积分10
13秒前
wzt发布了新的文献求助10
14秒前
cheng完成签到,获得积分10
14秒前
14秒前
Orange应助gjl采纳,获得10
14秒前
14秒前
lylyly发布了新的文献求助10
15秒前
15秒前
我爱科研完成签到 ,获得积分10
16秒前
小罗在无锡应助年年年年采纳,获得10
16秒前
中论文呢发布了新的文献求助10
17秒前
浮游应助有魅力曼荷采纳,获得10
17秒前
Dailei完成签到,获得积分10
18秒前
19秒前
Georges-09发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498977
求助须知:如何正确求助?哪些是违规求助? 4596023
关于积分的说明 14451856
捐赠科研通 4529128
什么是DOI,文献DOI怎么找? 2481834
邀请新用户注册赠送积分活动 1465825
关于科研通互助平台的介绍 1438777