Non-trivial relationship between behavioral avalanches and internal neuronal dynamics in a recurrent neural network

动力学(音乐) 网络动力学 生物神经网络 混乱的 运动前神经元活动 统计物理学 循环神经网络 概率分布 人口 神经科学 复杂动力学 计算机科学 人工神经网络 人工智能 物理 心理学 数学 统计 数学分析 人口学 离散数学 社会学 声学
作者
Anja Rabus,Maria Masoliver,Aaron J. Gruber,Wilten Nicola,Jörn Davidsen
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (5) 被引量:2
标识
DOI:10.1063/5.0201838
摘要

Neuronal activity gives rise to behavior, and behavior influences neuronal dynamics, in a closed-loop control system. Is it possible then, to find a relationship between the statistical properties of behavior and neuronal dynamics? Measurements of neuronal activity and behavior have suggested a direct relationship between scale-free neuronal and behavioral dynamics. Yet, these studies captured only local dynamics in brain sub-networks. Here, we investigate the relationship between internal dynamics and output statistics in a mathematical model system where we have access to the dynamics of all network units. We train a recurrent neural network (RNN), initialized in a high-dimensional chaotic state, to sustain behavioral states for durations following a power-law distribution as observed experimentally. Changes in network connectivity due to training affect the internal dynamics of neuronal firings, leading to neuronal avalanche size distributions approximating power-laws over some ranges. Yet, randomizing the changes in network connectivity can leave these power-law features largely unaltered. Specifically, whereas neuronal avalanche duration distributions show some variations between RNNs with trained and randomized decoders, neuronal avalanche size distributions are invariant, in the total population and in output-correlated sub-populations. This is true independent of whether the randomized decoders preserve power-law distributed behavioral dynamics. This demonstrates that a one-to-one correspondence between the considered statistical features of behavior and neuronal dynamics cannot be established and their relationship is non-trivial. Our findings also indicate that statistical properties of the intrinsic dynamics may be preserved, even as the internal state responsible for generating the desired output dynamics is perturbed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sln完成签到,获得积分10
1秒前
随遇而安应助kiki采纳,获得10
2秒前
尊敬的语薇完成签到,获得积分10
2秒前
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
瓷儿发布了新的文献求助10
3秒前
子车茗应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
ll完成签到,获得积分10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
Andy_Cheung应助科研通管家采纳,获得10
4秒前
小大夫应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
呵呵呵呵应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
小大夫应助科研通管家采纳,获得10
4秒前
4秒前
nozero应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
优美的小夏完成签到,获得积分10
5秒前
感性的数据线应助qinyu采纳,获得100
6秒前
高分求助中
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3714760
求助须知:如何正确求助?哪些是违规求助? 3261985
关于积分的说明 9921761
捐赠科研通 2975718
什么是DOI,文献DOI怎么找? 1631852
邀请新用户注册赠送积分活动 774161
科研通“疑难数据库(出版商)”最低求助积分说明 744731