Two‐stage randomized clinical trials with a right‐censored endpoint: Comparison of frequentist and Bayesian adaptive designs

频数推理 中期分析 样本量测定 统计 贝叶斯概率 提前停车 I类和II类错误 统计假设检验 危险系数 置信区间 随机对照试验 计算机科学 计量经济学 数学 贝叶斯推理 机器学习 医学 人工神经网络 外科
作者
Luana Boumendil,Martine Bagot,Vincent Lévy,Lucie Biard
出处
期刊:Statistics in Medicine [Wiley]
标识
DOI:10.1002/sim.10130
摘要

Adaptive randomized clinical trials are of major interest when dealing with a time‐to‐event outcome in a prolonged observation window. No consensus exists either to define stopping boundaries or to combine values or test statistics in the terminal analysis in the case of a frequentist design and sample size adaptation. In a one‐sided setting, we compared three frequentist approaches using stopping boundaries relying on ‐spending functions and a Bayesian monitoring setting with boundaries based on the posterior distribution of the log‐hazard ratio. All designs comprised a single interim analysis with an efficacy stopping rule and the possibility of sample size adaptation at this interim step. Three frequentist approaches were defined based on the terminal analysis: combination of stagewise statistics (Wassmer) or of values (Desseaux), or on patientwise splitting (Jörgens), and we compared the results with those of the Bayesian monitoring approach (Freedman). These different approaches were evaluated in a simulation study and then illustrated on a real dataset from a randomized clinical trial conducted in elderly patients with chronic lymphocytic leukemia. All approaches controlled for the type I error rate, except for the Bayesian monitoring approach, and yielded satisfactory power. It appears that the frequentist approaches are the best in underpowered trials. The power of all the approaches was affected by the violation of the proportional hazards (PH) assumption. For adaptive designs with a survival endpoint and a one‐sided alternative hypothesis, the Wassmer and Jörgens approaches after sample size adaptation should be preferred, unless violation of PH is suspected.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Twonej应助科研通管家采纳,获得30
刚刚
淀粉发布了新的文献求助10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
天天快乐应助Moke采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
Twonej应助科研通管家采纳,获得30
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
慕青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
恋如雪止应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
恋如雪止应助科研通管家采纳,获得10
1秒前
大意的星星完成签到,获得积分10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
2秒前
慕青应助科研通管家采纳,获得30
2秒前
欢喜的捕应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
大个应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
恋如雪止应助科研通管家采纳,获得10
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770469
求助须知:如何正确求助?哪些是违规求助? 5585240
关于积分的说明 15424252
捐赠科研通 4904062
什么是DOI,文献DOI怎么找? 2638468
邀请新用户注册赠送积分活动 1586331
关于科研通互助平台的介绍 1541406