A Transformer-Based Approach Combining Deep Learning Network and Spatial-Temporal Information for Raw EEG Classification

计算机科学 脑电图 变压器 人工智能 深度学习 模式识别(心理学) 机器学习 语音识别 心理学 工程类 神经科学 电压 电气工程
作者
Jin Xie,J. X. Zhang,Jiayao Sun,Zheng Ma,Liuni Qin,Guanglin Li,Huihui Zhou,Yang Zhan
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:30: 2126-2136 被引量:136
标识
DOI:10.1109/tnsre.2022.3194600
摘要

The attention mechanism of the Transformer has the advantage of extracting feature correlation in the long-sequence data and visualizing the model. As time-series data, the spatial and temporal dependencies of the EEG signals between the time points and the different channels contain important information for accurate classification. So far, Transformer-based approaches have not been widely explored in motor-imagery EEG classification and visualization, especially lacking general models based on cross-individual validation. Taking advantage of the Transformer model and the spatial-temporal characteristics of the EEG signals, we designed Transformer-based models for classifications of motor imagery EEG based on the PhysioNet dataset. With 3s EEG data, our models obtained the best classification accuracy of 83.31%, 74.44%, and 64.22% on two-, three-, and four-class motor-imagery tasks in cross-individual validation, which outperformed other state-of-the-art models by 0.88%, 2.11%, and 1.06%. The inclusion of the positional embedding modules in the Transformer could improve the EEG classification performance. Furthermore, the visualization results of attention weights provided insights into the working mechanism of the Transformer-based networks during motor imagery tasks. The topography of the attention weights revealed a pattern of event-related desynchronization (ERD) which was consistent with the results from the spectral analysis of Mu and beta rhythm over the sensorimotor areas. Together, our deep learning methods not only provide novel and powerful tools for classifying and understanding EEG data but also have broad applications for brain-computer interface (BCI) systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助雪山飞鹰采纳,获得10
刚刚
2秒前
3秒前
烟花应助emilybei采纳,获得10
3秒前
4秒前
5秒前
在水一方应助yin采纳,获得10
6秒前
典雅又夏完成签到,获得积分10
7秒前
周钦完成签到,获得积分10
7秒前
无误发布了新的文献求助10
8秒前
yuko应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
Greta应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
9秒前
威武从霜发布了新的文献求助10
10秒前
whatever应助科研通管家采纳,获得10
10秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
青柠大大应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
yar应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
Bio应助科研通管家采纳,获得30
10秒前
菠菜应助科研通管家采纳,获得200
10秒前
冷艳的姿完成签到,获得积分20
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
Bio应助科研通管家采纳,获得30
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
云淡风清完成签到 ,获得积分10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014