A Transformer-Based Approach Combining Deep Learning Network and Spatial-Temporal Information for Raw EEG Classification

计算机科学 脑电图 变压器 可视化 人工智能 运动表象 脑-机接口 模式识别(心理学) 机器学习 工程类 神经科学 电压 电气工程 生物
作者
Jin Xie,Jie Zhang,Jiayao Sun,Zheng Ma,Liuni Qin,Guanglin Li,Huihui Zhou,Zhan Yang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:30: 2126-2136 被引量:37
标识
DOI:10.1109/tnsre.2022.3194600
摘要

The attention mechanism of the Transformer has the advantage of extracting feature correlation in the long-sequence data and visualizing the model. As time-series data, the spatial and temporal dependencies of the EEG signals between the time points and the different channels contain important information for accurate classification. So far, Transformer-based approaches have not been widely explored in motor-imagery EEG classification and visualization, especially lacking general models based on cross-individual validation. Taking advantage of the Transformer model and the spatial-temporal characteristics of the EEG signals, we designed Transformer-based models for classifications of motor imagery EEG based on the PhysioNet dataset. With 3s EEG data, our models obtained the best classification accuracy of 83.31%, 74.44%, and 64.22% on two-, three-, and four-class motor-imagery tasks in cross-individual validation, which outperformed other state-of-the-art models by 0.88%, 2.11%, and 1.06%. The inclusion of the positional embedding modules in the Transformer could improve the EEG classification performance. Furthermore, the visualization results of attention weights provided insights into the working mechanism of the Transformer-based networks during motor imagery tasks. The topography of the attention weights revealed a pattern of event-related desynchronization (ERD) which was consistent with the results from the spectral analysis of Mu and beta rhythm over the sensorimotor areas. Together, our deep learning methods not only provide novel and powerful tools for classifying and understanding EEG data but also have broad applications for brain-computer interface (BCI) systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234发布了新的文献求助10
刚刚
刚刚
一叶扁舟发布了新的文献求助10
1秒前
4秒前
5秒前
小夏发布了新的文献求助10
5秒前
桂馥兰馨完成签到 ,获得积分10
5秒前
白河发布了新的文献求助10
6秒前
李健应助lll采纳,获得10
8秒前
田様应助1234采纳,获得10
9秒前
10秒前
忧虑的花卷完成签到,获得积分10
12秒前
Owen应助22鱼采纳,获得30
13秒前
形而完成签到,获得积分10
14秒前
小夏完成签到,获得积分10
15秒前
15秒前
早日发nature完成签到,获得积分10
16秒前
16秒前
游一完成签到,获得积分10
17秒前
酷波er应助动听的灵槐采纳,获得10
19秒前
21秒前
DW发布了新的文献求助10
21秒前
TT发布了新的文献求助10
21秒前
嘘唏完成签到,获得积分10
22秒前
WHY完成签到,获得积分10
23秒前
23秒前
蓝天完成签到,获得积分10
25秒前
从容的戎发布了新的文献求助10
26秒前
WHY发布了新的文献求助10
26秒前
28秒前
28秒前
在水一方应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
33秒前
科目三应助WHY采纳,获得10
34秒前
NexusExplorer应助TT采纳,获得10
34秒前
华仔应助topsun采纳,获得10
35秒前
Dore发布了新的文献求助10
35秒前
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012