亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Transformer-Based Approach Combining Deep Learning Network and Spatial-Temporal Information for Raw EEG Classification

计算机科学 脑电图 变压器 人工智能 深度学习 模式识别(心理学) 机器学习 语音识别 心理学 工程类 神经科学 电压 电气工程
作者
Jin Xie,J. X. Zhang,Jiayao Sun,Zheng Ma,Liuni Qin,Guanglin Li,Huihui Zhou,Yang Zhan
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:30: 2126-2136 被引量:136
标识
DOI:10.1109/tnsre.2022.3194600
摘要

The attention mechanism of the Transformer has the advantage of extracting feature correlation in the long-sequence data and visualizing the model. As time-series data, the spatial and temporal dependencies of the EEG signals between the time points and the different channels contain important information for accurate classification. So far, Transformer-based approaches have not been widely explored in motor-imagery EEG classification and visualization, especially lacking general models based on cross-individual validation. Taking advantage of the Transformer model and the spatial-temporal characteristics of the EEG signals, we designed Transformer-based models for classifications of motor imagery EEG based on the PhysioNet dataset. With 3s EEG data, our models obtained the best classification accuracy of 83.31%, 74.44%, and 64.22% on two-, three-, and four-class motor-imagery tasks in cross-individual validation, which outperformed other state-of-the-art models by 0.88%, 2.11%, and 1.06%. The inclusion of the positional embedding modules in the Transformer could improve the EEG classification performance. Furthermore, the visualization results of attention weights provided insights into the working mechanism of the Transformer-based networks during motor imagery tasks. The topography of the attention weights revealed a pattern of event-related desynchronization (ERD) which was consistent with the results from the spectral analysis of Mu and beta rhythm over the sensorimotor areas. Together, our deep learning methods not only provide novel and powerful tools for classifying and understanding EEG data but also have broad applications for brain-computer interface (BCI) systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cheryjay发布了新的文献求助10
1秒前
隐形曼青应助小桃耶采纳,获得10
5秒前
cheryjay完成签到,获得积分10
7秒前
李健的小迷弟应助马文玉采纳,获得10
10秒前
Taiga完成签到 ,获得积分10
10秒前
半农应助cheryjay采纳,获得10
11秒前
旺旺完成签到,获得积分10
17秒前
科研通AI6应助SKY采纳,获得10
19秒前
陈chen完成签到 ,获得积分10
22秒前
桐桐应助芷兰丁香采纳,获得10
23秒前
feiCheung完成签到 ,获得积分10
52秒前
52秒前
丘比特应助gqz采纳,获得10
57秒前
lly发布了新的文献求助10
58秒前
Orange应助lly采纳,获得10
1分钟前
摸鱼王完成签到,获得积分10
1分钟前
激昂的如柏完成签到,获得积分10
1分钟前
1分钟前
小猫完成签到 ,获得积分10
1分钟前
sdshi发布了新的文献求助10
1分钟前
精明的信封完成签到,获得积分10
1分钟前
彭进水完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
qq完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
芷兰丁香发布了新的文献求助10
1分钟前
Earr完成签到 ,获得积分10
1分钟前
1分钟前
Fanxq完成签到,获得积分10
2分钟前
今后应助芷兰丁香采纳,获得10
2分钟前
马文玉发布了新的文献求助10
2分钟前
思源应助Fanxq采纳,获得10
2分钟前
威武灵阳完成签到,获得积分10
2分钟前
2分钟前
小桃耶发布了新的文献求助10
2分钟前
2分钟前
ljw完成签到 ,获得积分10
2分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584621
求助须知:如何正确求助?哪些是违规求助? 4668381
关于积分的说明 14771387
捐赠科研通 4611679
什么是DOI,文献DOI怎么找? 2530052
邀请新用户注册赠送积分活动 1498980
关于科研通互助平台的介绍 1467448