A Transformer-Based Approach Combining Deep Learning Network and Spatial-Temporal Information for Raw EEG Classification

计算机科学 脑电图 变压器 人工智能 深度学习 模式识别(心理学) 机器学习 语音识别 心理学 工程类 神经科学 电压 电气工程
作者
Jin Xie,J. X. Zhang,Jiayao Sun,Zheng Ma,Liuni Qin,Guanglin Li,Huihui Zhou,Yang Zhan
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:30: 2126-2136 被引量:136
标识
DOI:10.1109/tnsre.2022.3194600
摘要

The attention mechanism of the Transformer has the advantage of extracting feature correlation in the long-sequence data and visualizing the model. As time-series data, the spatial and temporal dependencies of the EEG signals between the time points and the different channels contain important information for accurate classification. So far, Transformer-based approaches have not been widely explored in motor-imagery EEG classification and visualization, especially lacking general models based on cross-individual validation. Taking advantage of the Transformer model and the spatial-temporal characteristics of the EEG signals, we designed Transformer-based models for classifications of motor imagery EEG based on the PhysioNet dataset. With 3s EEG data, our models obtained the best classification accuracy of 83.31%, 74.44%, and 64.22% on two-, three-, and four-class motor-imagery tasks in cross-individual validation, which outperformed other state-of-the-art models by 0.88%, 2.11%, and 1.06%. The inclusion of the positional embedding modules in the Transformer could improve the EEG classification performance. Furthermore, the visualization results of attention weights provided insights into the working mechanism of the Transformer-based networks during motor imagery tasks. The topography of the attention weights revealed a pattern of event-related desynchronization (ERD) which was consistent with the results from the spectral analysis of Mu and beta rhythm over the sensorimotor areas. Together, our deep learning methods not only provide novel and powerful tools for classifying and understanding EEG data but also have broad applications for brain-computer interface (BCI) systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1232112发布了新的文献求助10
刚刚
Ava应助xhf采纳,获得10
刚刚
刚刚
无花果应助EED采纳,获得10
1秒前
桥木有舟发布了新的文献求助10
1秒前
jiang完成签到,获得积分10
1秒前
1秒前
DY发布了新的文献求助10
1秒前
踏实无敌应助小熊软糖采纳,获得20
2秒前
meng发布了新的文献求助10
3秒前
莫非发布了新的文献求助10
3秒前
赘婿应助茉莉花采纳,获得10
3秒前
桐桐应助潇洒映冬采纳,获得10
3秒前
踏实无敌应助石榴采纳,获得30
4秒前
切克闹发布了新的文献求助10
5秒前
小周发布了新的文献求助10
5秒前
5秒前
MuMay发布了新的文献求助10
5秒前
llw发布了新的文献求助10
6秒前
6秒前
dfghjkl发布了新的文献求助10
6秒前
大模型应助老实芯采纳,获得10
6秒前
6秒前
giucher完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI5应助默默的彩虹采纳,获得10
8秒前
8秒前
8秒前
9秒前
10秒前
吴晨曦发布了新的文献求助10
11秒前
甜甜甜发布了新的文献求助10
11秒前
SciGPT应助meng采纳,获得10
11秒前
xhf发布了新的文献求助10
12秒前
笨笨的安彤完成签到,获得积分20
12秒前
sunchang发布了新的文献求助10
12秒前
鱼老师发布了新的文献求助10
12秒前
13秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744546
求助须知:如何正确求助?哪些是违规求助? 3287344
关于积分的说明 10053592
捐赠科研通 3003606
什么是DOI,文献DOI怎么找? 1649173
邀请新用户注册赠送积分活动 785060
科研通“疑难数据库(出版商)”最低求助积分说明 750937