Dual Contrastive Prediction for Incomplete Multi-View Representation Learning

计算机科学 人工智能 特征学习 一致性(知识库) 机器学习 代表(政治) 聚类分析 熵(时间箭头) 对偶(语法数字) 无监督学习 物理 文学类 艺术 政治 法学 量子力学 政治学
作者
Yijie Lin,Yuanbiao Gou,X. Liu,Jinfeng Bai,Jiancheng Lv,Xi Peng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-14 被引量:118
标识
DOI:10.1109/tpami.2022.3197238
摘要

In this article, we propose a unified framework to solve the following two challenging problems in incomplete multi-view representation learning: i) how to learn a consistent representation unifying different views, and ii) how to recover the missing views. To address the challenges, we provide an information theoretical framework under which the consistency learning and data recovery are treated as a whole. With the theoretical framework, we propose a novel objective function which jointly solves the aforementioned two problems and achieves a provable sufficient and minimal representation. In detail, the consistency learning is performed by maximizing the mutual information of different views through contrastive learning, and the missing views are recovered by minimizing the conditional entropy through dual prediction. To the best of our knowledge, this is one of the first works to theoretically unify the cross-view consistency learning and data recovery for representation learning. Extensive experimental results show that the proposed method remarkably outperforms 20 competitive multi-view learning methods on six datasets in terms of clustering, classification, and human action recognition. The code could be accessed from https://pengxi.me.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦的威完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
orixero应助完美的向雁采纳,获得10
2秒前
大个应助奋斗的蘑菇采纳,获得10
3秒前
Jenny发布了新的文献求助10
4秒前
Vaibhav完成签到,获得积分10
4秒前
MRM发布了新的文献求助10
6秒前
鲤鱼灵阳完成签到,获得积分10
6秒前
6秒前
快乐的千亦完成签到 ,获得积分10
7秒前
9秒前
10秒前
单细胞测序完成签到,获得积分10
11秒前
热情的板栗完成签到,获得积分10
12秒前
zx完成签到,获得积分10
12秒前
迟大猫应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
maox1aoxin应助科研通管家采纳,获得30
13秒前
慕青应助科研通管家采纳,获得10
13秒前
迟大猫应助科研通管家采纳,获得10
13秒前
Lingdongmei应助科研通管家采纳,获得10
13秒前
迟大猫应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得30
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
CodeCraft应助舒心的南珍采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
Singularity应助科研通管家采纳,获得10
14秒前
迟大猫应助科研通管家采纳,获得80
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
124应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
迟大猫应助科研通管家采纳,获得10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672384
求助须知:如何正确求助?哪些是违规求助? 3228736
关于积分的说明 9781794
捐赠科研通 2939160
什么是DOI,文献DOI怎么找? 1610638
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174