Understanding the evolution of an emerging technological paradigm and its impact: The case of Digital Twin

计算机科学 数据科学 主题模型 服务(商务) 产品(数学) 文献计量学 情报检索 万维网 营销 几何学 数学 业务
作者
Suparna Dhar,Pratik Tarafdar,Indranil Bose
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:185: 122098-122098
标识
DOI:10.1016/j.techfore.2022.122098
摘要

The interest of the academic and practitioner communities on the topic of Digital Twin has grown substantially in recent years. Bibliometric analysis can serve as a useful tool to explore the roadmap of the Digital Twin across various emergent themes over time. In this paper, we compare and analyze 1270 news articles and 4036 research publications to assess the evolution of the Digital Twin paradigm according to these sources from 2016 to 2021. We apply topic modeling and sentiment analysis on the textual corpora. Our analysis shows that certain topics related to applications, simulation, and enabling technologies for Digital Twin find greater coverage and generate higher positivity over time. We ascertain the coevolution and divergence in the number and sentiment of topics through curve matching metrics and determine whether they can rouse consumer interest, captured through online search trends. Our regression analysis shows that news on applications of Digital Twin and research on process evaluation through real-time simulation significantly impact the search frequency of consumers. Our research helps the digital product and service providers to understand the academia-industry gap in their effort to investigate Digital Twin and guides them on steps to take and themes to pursue for generating consumer interest. • We conduct bibliometric analysis of 1270 news articles and 4036 research publications on Digital Twin. • We use topic modeling to identify the evolution of topics for Digital Twin from 2016 to 2021. • We examine the change in sentiments generated by the topics on Digital Twin over time. • We determine the consumer interest on Digital Twin through search queries on Google Trends. • We use regression analysis to ascertain the impact of news and research on consumer search.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅灵波完成签到,获得积分10
刚刚
刚刚
tachikoma关注了科研通微信公众号
2秒前
宇文思发布了新的文献求助10
2秒前
顾矜应助cheers采纳,获得10
2秒前
keyanzhangxiao给keyanzhangxiao的求助进行了留言
2秒前
5秒前
7秒前
LI发布了新的文献求助10
7秒前
7秒前
gabee完成签到 ,获得积分10
9秒前
RYAN完成签到 ,获得积分10
10秒前
10秒前
Dc发布了新的文献求助10
11秒前
Nitric_Oxide应助专一的白凝采纳,获得20
13秒前
13秒前
清爽的恋风完成签到,获得积分10
13秒前
沈佳琪发布了新的文献求助10
15秒前
Dc完成签到,获得积分10
16秒前
16秒前
华仔应助一一采纳,获得10
16秒前
腼腆的绝山完成签到,获得积分20
17秒前
脑洞疼应助Wenpandaen采纳,获得10
17秒前
17秒前
18秒前
跳跃尔琴发布了新的文献求助10
18秒前
所所应助虚幻皮卡丘采纳,获得10
19秒前
科研通AI2S应助成就馒头采纳,获得10
22秒前
22秒前
LI完成签到,获得积分10
23秒前
乐乐应助雨霖铃采纳,获得10
25秒前
26秒前
科研通AI2S应助丽丽采纳,获得10
27秒前
29秒前
33秒前
May完成签到,获得积分20
33秒前
一一发布了新的文献求助10
33秒前
国标水果猎人完成签到,获得积分10
34秒前
李健应助YI点半的飞机场采纳,获得10
35秒前
DIDIDI完成签到 ,获得积分10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134917
求助须知:如何正确求助?哪些是违规求助? 2785800
关于积分的说明 7774138
捐赠科研通 2441635
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825