Forecasting and trading credit default swap indices using a deep learning model integrating Merton and LSTMs

人工智能 计算机科学 机器学习 信用违约掉期 感知器 夏普比率 支持向量机 均方误差 索引(排版) 计量经济学 人工神经网络 经济 信用风险 数学 财务 统计 文件夹 万维网
作者
Weifang Mao,Huiming Zhu,Hao Wu,Yijie Lu,Haidong Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:213: 119012-119012 被引量:20
标识
DOI:10.1016/j.eswa.2022.119012
摘要

Using macroeconomic and financial conditions to forecast credit default swap (CDS) spreads is a challenging task. In this paper, we propose the Merton-LSTM model, a modified LSTM model formed by integrating with the Merton determinants model, to forecast the CDS indices. We provide the rigorous math behind the Merton-LSTM model, which demonstrates that by leveraging the nonlinear learning ability of LSTM with increased model capacity, the Merton-LSTM model is expected to learn the inherent association between the Merton determinants and CDS spreads. Further, the Merton-LSTM model is compared with the machine learning models LSTM, gated recurrent unit (GRU), multilayer perceptron network (MLP), support vector machine (SVM) and a typical stochastic series model in forecasting the two most liquid five-year CDS indices, North America High Yield index (CDX.NA.HY) and North America Investment Grade index (CDX.NA.IG) through the root mean squared error (RMSE) and the Diebold-Mariano test. The comparison results show that the RMSEs of the Merton-LSTM model are the lowest (6.2570–27.2000 for CDX.NA.HY and 1.3168–6.4772 for CDX.NA.IG) compared to other competitive models. The superiority of the Merton-LSTM model in forecasting performance is highlighted in long-term prediction even with a forecasting horizon extended to 28 days. Simulated trading with different thresholds and horizons is conducted in this study. We find that the Merton-LSTM trading strategy yields the highest annualized Sharpe ratios and lowest maximum losses at most thresholds and horizons, highlighting the economic significance of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ekko完成签到,获得积分10
2秒前
2秒前
4秒前
JamesPei应助科研通管家采纳,获得20
4秒前
ding应助科研通管家采纳,获得10
4秒前
Ava应助快来吃甜瓜采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得30
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
Chaos发布了新的文献求助10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
我是老大应助shendu采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
popvich应助111清采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
馆长应助科研通管家采纳,获得10
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
6秒前
Hello应助椒闫皮皮虾采纳,获得10
6秒前
抹茶夏天完成签到,获得积分10
7秒前
7秒前
wfrg完成签到,获得积分10
7秒前
zt完成签到,获得积分10
7秒前
8秒前
吉克发布了新的文献求助10
9秒前
帅气书白发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633293
求助须知:如何正确求助?哪些是违规求助? 4029304
关于积分的说明 12466863
捐赠科研通 3715514
什么是DOI,文献DOI怎么找? 2050190
邀请新用户注册赠送积分活动 1081753
科研通“疑难数据库(出版商)”最低求助积分说明 964055