Forecasting and trading credit default swap indices using a deep learning model integrating Merton and LSTMs

人工智能 计算机科学 机器学习 信用违约掉期 感知器 夏普比率 支持向量机 均方误差 索引(排版) 计量经济学 人工神经网络 经济 信用风险 数学 财务 统计 文件夹 万维网
作者
Weifang Mao,Huiming Zhu,Hao Wu,Yijie Lu,Haidong Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:213: 119012-119012 被引量:11
标识
DOI:10.1016/j.eswa.2022.119012
摘要

Using macroeconomic and financial conditions to forecast credit default swap (CDS) spreads is a challenging task. In this paper, we propose the Merton-LSTM model, a modified LSTM model formed by integrating with the Merton determinants model, to forecast the CDS indices. We provide the rigorous math behind the Merton-LSTM model, which demonstrates that by leveraging the nonlinear learning ability of LSTM with increased model capacity, the Merton-LSTM model is expected to learn the inherent association between the Merton determinants and CDS spreads. Further, the Merton-LSTM model is compared with the machine learning models LSTM, gated recurrent unit (GRU), multilayer perceptron network (MLP), support vector machine (SVM) and a typical stochastic series model in forecasting the two most liquid five-year CDS indices, North America High Yield index (CDX.NA.HY) and North America Investment Grade index (CDX.NA.IG) through the root mean squared error (RMSE) and the Diebold-Mariano test. The comparison results show that the RMSEs of the Merton-LSTM model are the lowest (6.2570–27.2000 for CDX.NA.HY and 1.3168–6.4772 for CDX.NA.IG) compared to other competitive models. The superiority of the Merton-LSTM model in forecasting performance is highlighted in long-term prediction even with a forecasting horizon extended to 28 days. Simulated trading with different thresholds and horizons is conducted in this study. We find that the Merton-LSTM trading strategy yields the highest annualized Sharpe ratios and lowest maximum losses at most thresholds and horizons, highlighting the economic significance of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tgd完成签到,获得积分10
1秒前
1秒前
3秒前
领导范儿应助csy采纳,获得10
3秒前
3秒前
4秒前
xiaoxiao完成签到,获得积分10
4秒前
SADHIASK完成签到,获得积分10
4秒前
热泪盈眶发布了新的文献求助10
6秒前
6秒前
柚子完成签到 ,获得积分10
6秒前
小耳朵完成签到,获得积分10
7秒前
研友_8Yo3dn完成签到,获得积分10
7秒前
哈哈爷发布了新的文献求助10
8秒前
大胆吐司发布了新的文献求助10
9秒前
WTX完成签到,获得积分0
9秒前
qmdx发布了新的文献求助30
11秒前
酷波er应助科大鲨鱼采纳,获得10
12秒前
12秒前
ygx完成签到,获得积分10
12秒前
紫愿发布了新的文献求助10
12秒前
Singularity应助小白一号采纳,获得10
12秒前
卷心菜完成签到,获得积分10
13秒前
13秒前
充电宝应助宋宋采纳,获得10
14秒前
15秒前
雨碎寒江发布了新的文献求助10
15秒前
15秒前
wood发布了新的文献求助10
16秒前
儒雅的笑卉完成签到,获得积分20
16秒前
16秒前
优雅小橘子完成签到 ,获得积分10
18秒前
19秒前
有动力噢完成签到,获得积分10
19秒前
csy发布了新的文献求助10
20秒前
ll完成签到,获得积分20
21秒前
666完成签到,获得积分10
23秒前
有动力噢发布了新的文献求助10
23秒前
24秒前
无花果应助大胆吐司采纳,获得10
24秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129285
求助须知:如何正确求助?哪些是违规求助? 2780109
关于积分的说明 7746184
捐赠科研通 2435286
什么是DOI,文献DOI怎么找? 1294008
科研通“疑难数据库(出版商)”最低求助积分说明 623498
版权声明 600542