Deep Learning Approach for Diagnosing Early Osteonecrosis of the Femoral Head Based on Magnetic Resonance Imaging

医学 磁共振成像 接收机工作特性 股骨头 骨科手术 放射科 卷积神经网络 深度学习 外科 人工智能 内科学 计算机科学
作者
Xianyue Shen,Jia Luo,Xiongfeng Tang,Bo Chen,Yanguo Qin,You Zhou,Jianlin Xiao
出处
期刊:Journal of Arthroplasty [Elsevier BV]
卷期号:38 (10): 2044-2050 被引量:24
标识
DOI:10.1016/j.arth.2022.10.003
摘要

Background The diagnosis of early osteonecrosis of the femoral head (ONFH) based on magnetic resonance imaging (MRI) is challenging due to variability in the surgeon’s experience level. This study developed an MRI-based deep learning system to detect early ONFH and evaluated its feasibility in the clinic. Methods We retrospectively evaluated clinical MRIs of the hips that were performed in our institution from January 2019 to June 2022 and collected all MRIs diagnosed with early ONFH. An advanced convolutional neural network (CNN) was trained and optimized; then, the diagnostic performance of the CNN was evaluated according to its accuracy, sensitivity, and specificity. We also further compared the CNN’s performance with that of orthopaedic surgeons. Results Overall, 11,061 images were retrospectively included in the present study and were divided into three datasets with ratio 7:2:1. The area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity of the CNN model for identifying early ONFH were 0.98, 98.4, 97.6, and 98.6%, respectively. In our review panel, the averaged accuracy, sensitivity, and specificity for identifying ONFH were 91.7, 87.0, and 94.1% for attending orthopaedic surgeons; 87.1, 84.0, and 89.3% for resident orthopaedic surgeons; and 97.1, 96.0, and 97.9% for deputy chief orthopaedic surgeons, respectively. Conclusion The deep learning system showed a comparable performance to that of deputy chief orthopaedic surgeons in identifying early ONFH. The success of deep learning diagnosis of ONFH might be conducive to assisting less-experienced surgeons, especially in large-scale medical imaging screening and community scenarios lacking consulting experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ONER完成签到,获得积分10
1秒前
科研通AI6应助聪明的雨南采纳,获得10
3秒前
3秒前
4秒前
wdb完成签到,获得积分10
4秒前
4秒前
整齐的未来完成签到 ,获得积分10
5秒前
情怀应助坚强莺采纳,获得10
7秒前
醋溜爆肚儿完成签到,获得积分10
7秒前
浮游应助Nightfall采纳,获得10
8秒前
9秒前
Amorphous发布了新的文献求助10
9秒前
10秒前
佛了欢喜发布了新的文献求助10
10秒前
瓜子壳发布了新的文献求助10
10秒前
天真凡灵发布了新的文献求助10
11秒前
SciGPT应助sfliufighting采纳,获得10
11秒前
在水一方应助sw采纳,获得10
12秒前
佟鹭其完成签到 ,获得积分10
13秒前
科研通AI5应助背后的鞋垫采纳,获得10
14秒前
酷波er应助ccc采纳,获得10
14秒前
思源应助飞快的河马采纳,获得10
15秒前
Xavier完成签到,获得积分10
15秒前
科研通AI6应助llynvxia采纳,获得10
15秒前
15秒前
16秒前
16秒前
16秒前
17秒前
科研通AI5应助HoraceHou采纳,获得10
17秒前
17秒前
kaworul发布了新的文献求助10
17秒前
leaolf应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
19秒前
leaolf应助科研通管家采纳,获得10
19秒前
wanci应助科研通管家采纳,获得10
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
19秒前
Akim应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558330
求助须知:如何正确求助?哪些是违规求助? 3985350
关于积分的说明 12338439
捐赠科研通 3655702
什么是DOI,文献DOI怎么找? 2013951
邀请新用户注册赠送积分活动 1048833
科研通“疑难数据库(出版商)”最低求助积分说明 937181