Deep Learning Approach for Diagnosing Early Osteonecrosis of the Femoral Head Based on Magnetic Resonance Imaging

医学 磁共振成像 接收机工作特性 股骨头 骨科手术 放射科 卷积神经网络 深度学习 外科 人工智能 内科学 计算机科学
作者
Xianyue Shen,Jia Luo,Xiongfeng Tang,Bo Chen,Yanguo Qin,You Zhou,Jianlin Xiao
出处
期刊:Journal of Arthroplasty [Elsevier BV]
卷期号:38 (10): 2044-2050 被引量:21
标识
DOI:10.1016/j.arth.2022.10.003
摘要

Background The diagnosis of early osteonecrosis of the femoral head (ONFH) based on magnetic resonance imaging (MRI) is challenging due to variability in the surgeon’s experience level. This study developed an MRI-based deep learning system to detect early ONFH and evaluated its feasibility in the clinic. Methods We retrospectively evaluated clinical MRIs of the hips that were performed in our institution from January 2019 to June 2022 and collected all MRIs diagnosed with early ONFH. An advanced convolutional neural network (CNN) was trained and optimized; then, the diagnostic performance of the CNN was evaluated according to its accuracy, sensitivity, and specificity. We also further compared the CNN’s performance with that of orthopaedic surgeons. Results Overall, 11,061 images were retrospectively included in the present study and were divided into three datasets with ratio 7:2:1. The area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity of the CNN model for identifying early ONFH were 0.98, 98.4, 97.6, and 98.6%, respectively. In our review panel, the averaged accuracy, sensitivity, and specificity for identifying ONFH were 91.7, 87.0, and 94.1% for attending orthopaedic surgeons; 87.1, 84.0, and 89.3% for resident orthopaedic surgeons; and 97.1, 96.0, and 97.9% for deputy chief orthopaedic surgeons, respectively. Conclusion The deep learning system showed a comparable performance to that of deputy chief orthopaedic surgeons in identifying early ONFH. The success of deep learning diagnosis of ONFH might be conducive to assisting less-experienced surgeons, especially in large-scale medical imaging screening and community scenarios lacking consulting experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
XIXIw发布了新的文献求助10
2秒前
Owen应助sara采纳,获得10
3秒前
Z先生完成签到,获得积分20
3秒前
JINITAIMEI发布了新的文献求助10
5秒前
兴奋念真发布了新的文献求助10
5秒前
猪猪hero发布了新的文献求助10
5秒前
长情雨兰发布了新的文献求助10
6秒前
7秒前
車侖完成签到 ,获得积分10
8秒前
xxxx完成签到 ,获得积分10
10秒前
Ls关闭了Ls文献求助
11秒前
是玥玥啊发布了新的文献求助10
13秒前
14秒前
Z先生发布了新的文献求助30
16秒前
SYLH应助JINITAIMEI采纳,获得10
17秒前
SYLH应助JINITAIMEI采纳,获得10
17秒前
SYLH应助JINITAIMEI采纳,获得10
17秒前
coolkid应助JINITAIMEI采纳,获得10
17秒前
17秒前
1L聚合釜完成签到,获得积分10
18秒前
乌苏完成签到 ,获得积分10
18秒前
queer完成签到,获得积分10
18秒前
鉴定为学计算学的完成签到,获得积分10
18秒前
时云雁发布了新的文献求助10
21秒前
22秒前
22秒前
核桃应助a1075采纳,获得10
22秒前
量子星尘发布了新的文献求助50
23秒前
hhchhcmxhf发布了新的文献求助10
23秒前
桐桐应助yyds采纳,获得10
24秒前
26秒前
sky完成签到,获得积分10
26秒前
丘比特应助酒酿是也采纳,获得10
28秒前
狂野的微笑完成签到,获得积分10
29秒前
29秒前
慕青应助plant采纳,获得10
31秒前
JFy完成签到,获得积分10
31秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952472
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11089109
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309