Deep Learning Approach for Diagnosing Early Osteonecrosis of the Femoral Head Based on Magnetic Resonance Imaging

医学 磁共振成像 接收机工作特性 股骨头 骨科手术 放射科 卷积神经网络 深度学习 外科 人工智能 内科学 计算机科学
作者
Xianyue Shen,Jia Luo,Xiongfeng Tang,Bo Chen,Yanguo Qin,You Zhou,Jianlin Xiao
出处
期刊:Journal of Arthroplasty [Elsevier]
卷期号:38 (10): 2044-2050 被引量:16
标识
DOI:10.1016/j.arth.2022.10.003
摘要

Background The diagnosis of early osteonecrosis of the femoral head (ONFH) based on magnetic resonance imaging (MRI) is challenging due to variability in the surgeon’s experience level. This study developed an MRI-based deep learning system to detect early ONFH and evaluated its feasibility in the clinic. Methods We retrospectively evaluated clinical MRIs of the hips that were performed in our institution from January 2019 to June 2022 and collected all MRIs diagnosed with early ONFH. An advanced convolutional neural network (CNN) was trained and optimized; then, the diagnostic performance of the CNN was evaluated according to its accuracy, sensitivity, and specificity. We also further compared the CNN’s performance with that of orthopaedic surgeons. Results Overall, 11,061 images were retrospectively included in the present study and were divided into three datasets with ratio 7:2:1. The area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity of the CNN model for identifying early ONFH were 0.98, 98.4, 97.6, and 98.6%, respectively. In our review panel, the averaged accuracy, sensitivity, and specificity for identifying ONFH were 91.7, 87.0, and 94.1% for attending orthopaedic surgeons; 87.1, 84.0, and 89.3% for resident orthopaedic surgeons; and 97.1, 96.0, and 97.9% for deputy chief orthopaedic surgeons, respectively. Conclusion The deep learning system showed a comparable performance to that of deputy chief orthopaedic surgeons in identifying early ONFH. The success of deep learning diagnosis of ONFH might be conducive to assisting less-experienced surgeons, especially in large-scale medical imaging screening and community scenarios lacking consulting experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈的邪欢完成签到,获得积分10
3秒前
weng完成签到,获得积分10
7秒前
xichang完成签到 ,获得积分10
8秒前
许大脚完成签到 ,获得积分10
11秒前
关中人完成签到,获得积分10
16秒前
LSY完成签到,获得积分10
16秒前
fan发布了新的文献求助10
18秒前
22秒前
emxzemxz完成签到 ,获得积分10
22秒前
Wang发布了新的文献求助10
25秒前
嘻哈学习完成签到,获得积分10
26秒前
guandada完成签到 ,获得积分10
26秒前
h w wang完成签到,获得积分10
27秒前
小萌完成签到,获得积分10
31秒前
yuminger完成签到 ,获得积分10
32秒前
jameslee04完成签到 ,获得积分10
32秒前
fan完成签到,获得积分10
33秒前
34秒前
山复尔尔完成签到 ,获得积分10
35秒前
爱听歌连虎完成签到 ,获得积分10
36秒前
glanceofwind完成签到 ,获得积分10
41秒前
吴荣方完成签到 ,获得积分10
45秒前
JOY完成签到 ,获得积分10
45秒前
xu完成签到 ,获得积分10
48秒前
深情安青应助科研通管家采纳,获得10
53秒前
萧水白应助科研通管家采纳,获得10
53秒前
赵田完成签到 ,获得积分10
57秒前
chen完成签到 ,获得积分10
59秒前
刘敏完成签到 ,获得积分10
1分钟前
1分钟前
jhxie完成签到,获得积分10
1分钟前
djf点儿完成签到 ,获得积分10
1分钟前
满意代亦完成签到 ,获得积分10
1分钟前
魔叶树完成签到 ,获得积分10
1分钟前
旧雨新知完成签到 ,获得积分10
1分钟前
ZZzz完成签到 ,获得积分10
1分钟前
1分钟前
朴实问筠完成签到 ,获得积分10
1分钟前
Enchanted完成签到 ,获得积分10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134035
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768884
捐赠科研通 2440259
什么是DOI,文献DOI怎么找? 1297353
科研通“疑难数据库(出版商)”最低求助积分说明 624928
版权声明 600792