Deep Learning Approach for Diagnosing Early Osteonecrosis of the Femoral Head Based on Magnetic Resonance Imaging

医学 磁共振成像 接收机工作特性 股骨头 骨科手术 放射科 卷积神经网络 深度学习 外科 人工智能 内科学 计算机科学
作者
Xianyue Shen,Jia Luo,Xiongfeng Tang,Bo Chen,Yanguo Qin,You Zhou,Jianlin Xiao
出处
期刊:Journal of Arthroplasty [Elsevier BV]
卷期号:38 (10): 2044-2050 被引量:24
标识
DOI:10.1016/j.arth.2022.10.003
摘要

Background The diagnosis of early osteonecrosis of the femoral head (ONFH) based on magnetic resonance imaging (MRI) is challenging due to variability in the surgeon’s experience level. This study developed an MRI-based deep learning system to detect early ONFH and evaluated its feasibility in the clinic. Methods We retrospectively evaluated clinical MRIs of the hips that were performed in our institution from January 2019 to June 2022 and collected all MRIs diagnosed with early ONFH. An advanced convolutional neural network (CNN) was trained and optimized; then, the diagnostic performance of the CNN was evaluated according to its accuracy, sensitivity, and specificity. We also further compared the CNN’s performance with that of orthopaedic surgeons. Results Overall, 11,061 images were retrospectively included in the present study and were divided into three datasets with ratio 7:2:1. The area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity of the CNN model for identifying early ONFH were 0.98, 98.4, 97.6, and 98.6%, respectively. In our review panel, the averaged accuracy, sensitivity, and specificity for identifying ONFH were 91.7, 87.0, and 94.1% for attending orthopaedic surgeons; 87.1, 84.0, and 89.3% for resident orthopaedic surgeons; and 97.1, 96.0, and 97.9% for deputy chief orthopaedic surgeons, respectively. Conclusion The deep learning system showed a comparable performance to that of deputy chief orthopaedic surgeons in identifying early ONFH. The success of deep learning diagnosis of ONFH might be conducive to assisting less-experienced surgeons, especially in large-scale medical imaging screening and community scenarios lacking consulting experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵乂完成签到,获得积分10
刚刚
无辜绿竹发布了新的文献求助10
1秒前
wkc发布了新的文献求助10
1秒前
搜集达人应助鹤轩采纳,获得10
1秒前
情怀应助花粉过敏采纳,获得10
1秒前
玩命的凝天完成签到,获得积分10
1秒前
4秒前
科研通AI6应助科研疯采纳,获得10
4秒前
bkagyin应助xf潇洒哥采纳,获得20
4秒前
5秒前
大男完成签到,获得积分10
6秒前
6秒前
7秒前
FF完成签到 ,获得积分10
7秒前
123完成签到,获得积分10
10秒前
xiangwei发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
严明发布了新的文献求助10
13秒前
15秒前
浮游应助自然冥茗采纳,获得10
15秒前
花粉过敏发布了新的文献求助10
16秒前
脑洞疼应助犹豫晓啸采纳,获得10
17秒前
善学以致用应助张艺凡采纳,获得30
19秒前
一碗晚月完成签到,获得积分10
20秒前
y大哥略略略完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
英俊的铭应助y大哥略略略采纳,获得10
23秒前
23秒前
orixero应助minute采纳,获得10
23秒前
大力的宝川完成签到 ,获得积分10
23秒前
24秒前
24秒前
大道无痕发布了新的文献求助10
26秒前
科研通AI6应助程雯慧采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4898874
求助须知:如何正确求助?哪些是违规求助? 4179426
关于积分的说明 12974964
捐赠科研通 3943420
什么是DOI,文献DOI怎么找? 2163330
邀请新用户注册赠送积分活动 1181673
关于科研通互助平台的介绍 1087325