Investigating the effects and mechanisms of Erchen Decoction in the treatment of colorectal cancer by network pharmacology and experimental validation

小桶 药物数据库 系统药理学 交互网络 生物 计算生物学 基因本体论 机制(生物学) 结直肠癌 药理学 基因 癌症 基因表达 遗传学 药品 认识论 哲学
作者
Yanfei Shao,Jingxian Chen,Yujie Hu,Yuan Wu,Hualin Zeng,Song Lin,Qiying Lai,Xiaodong Fan,Xueliang Zhou,Min Zheng,Bizhen Gao,Jing Sun
出处
期刊:Frontiers in Pharmacology [Frontiers Media]
卷期号:13 被引量:2
标识
DOI:10.3389/fphar.2022.1000639
摘要

Objective: Erchen Decoction (ECD), a well-known traditional Chinese medicine, exerts metabolism-regulatory, immunoregulation, and anti-tumor effects. However, the action and pharmacological mechanism of ECD remain largely unclear. In the present study, we explored the effects and mechanisms of ECD in the treatment of CRC using network pharmacology, molecular docking, and systematic experimental validation. Methods: The active components of ECD were obtained from the TCMSP database and the potential targets of them were annotated by the STRING database. The CRC-related targets were identified from different databases (OMIM, DisGeNet, GeneCards, and DrugBank). The interactive targets of ECD and CRC were screened and the protein-protein interaction (PPI) networks were constructed. Then, the hub interactive targets were calculated and visualized from the PPI network using the Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. In addition, the molecular docking was performed. Finally, systematic in vitro, in vivo and molecular biology experiments were performed to further explore the anti-tumor effects and underlying mechanisms of ECD in CRC. Results: A total of 116 active components and 246 targets of ECD were predicted based on the component-target network analysis. 2406 CRC-related targets were obtained from different databases and 140 intersective targets were identified between ECD and CRC. 12 hub molecules (STAT3, JUN, MAPK3, TP53, MAPK1, RELA, FOS, ESR1, IL6, MAPK14, MYC, and CDKN1A) were finally screened from PPI network. GO and KEGG pathway enrichment analyses demonstrated that the biological discrepancy was mainly focused on the tumorigenesis-, immune-, and mechanism-related pathways. Based on the experimental validation, ECD could suppress the proliferation of CRC cells by inhibiting cell cycle and promoting cell apoptosis. In addition, ECD could inhibit tumor growth in mice. Finally, the results of molecular biology experiments suggested ECD could regulate the transcriptional levels of several hub molecules during the development of CRC, including MAPKs, PPARs, TP53, and STATs. Conclusion: This study revealed the potential pharmacodynamic material basis and underlying molecular mechanisms of ECD in the treatment of CRC, providing a novel insight for us to find more effective anti-CRC drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
giucher完成签到,获得积分10
4秒前
苗玉完成签到,获得积分10
6秒前
汉堡包应助BisonHamster采纳,获得10
6秒前
打打应助QIULIN采纳,获得10
7秒前
浮游应助梦幻采纳,获得10
10秒前
林间清晨完成签到 ,获得积分10
11秒前
共享精神应助哇咔咔采纳,获得10
12秒前
领导范儿应助昧冒冰采纳,获得10
13秒前
13秒前
13秒前
15秒前
winter关注了科研通微信公众号
15秒前
16秒前
16秒前
烟花应助科研民工李采纳,获得10
18秒前
18秒前
高嘉完成签到,获得积分10
18秒前
爱听歌的悒完成签到 ,获得积分10
19秒前
延胡索发布了新的文献求助10
19秒前
大模型应助yyf采纳,获得10
20秒前
amos完成签到 ,获得积分10
20秒前
热情的笑白完成签到,获得积分10
20秒前
yyljc完成签到,获得积分10
21秒前
hsa_ID完成签到,获得积分10
21秒前
专注迎荷发布了新的文献求助10
21秒前
22秒前
予光发布了新的文献求助10
22秒前
七七发布了新的文献求助10
22秒前
coucou完成签到,获得积分10
23秒前
Smile完成签到,获得积分10
23秒前
23秒前
王鴻源完成签到,获得积分10
24秒前
阿良完成签到,获得积分10
24秒前
26秒前
浮游应助nnnd77采纳,获得10
26秒前
zzz发布了新的文献求助10
26秒前
FashionBoy应助鲸鱼采纳,获得10
29秒前
29秒前
充电宝应助雪白鸿涛采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4916325
求助须知:如何正确求助?哪些是违规求助? 4189814
关于积分的说明 13012664
捐赠科研通 3959170
什么是DOI,文献DOI怎么找? 2170584
邀请新用户注册赠送积分活动 1188721
关于科研通互助平台的介绍 1096704