Identification of track irregularities with the multi-sensor acceleration measurements of vehicle dynamic responses

转向架 加速度 磁道(磁盘驱动器) 工程类 振动 控制理论(社会学) 控制工程 计算机科学 汽车工程 模拟 结构工程 控制(管理) 机械工程 人工智能 物理 经典力学 量子力学
作者
Xiangying Guo,Changkun Li,Zhong Luo,Dongxing Cao
出处
期刊:Vehicle System Dynamics [Taylor & Francis]
卷期号:62 (4): 906-931 被引量:3
标识
DOI:10.1080/00423114.2023.2200193
摘要

AbstractTrack irregularities induce potential risks to the safety and stability of railway track systems. This paper proposes a novel methodology to identify vertical and lateral track irregularities. The method involves measuring system-based attitude calculation and a model-based unknown input observer estimator, based on the dynamic responses of distributed multi-sensors on the vehicle and bogie. First, a mechanical model of wheel-rail contacts is built with dynamic methods. The model considers the different directions of motion for a railway vehicle and consists of two bogies and four wheelsets. Based on the multi-sensor acceleration measurement, the vertical and lateral acceleration signals of the vehicle and bogies are integrated into the displacement signal. Then a state-space description of the vehicle suspension model is established for inverse dynamical analysis to extract the input signals. A suitable unknown input observer is constructed to estimate the track irregularities by transforming the state space equations of the vehicle into an augmented system that can monitor the track irregularities in-service. This method provides an opportunity to reduce the costs of the monitoring infrastructure and provide quicker and more reliable information about the status of a track.KEYWORDS: Track irregularity identificationcondition monitoringdynamic responsesonboard measurementsattitude calculationunknown input observer Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by National Natural Science Foundation of China: [grant no 11772010 and 11832002]; Key Laboratory of Vibration and Control of Aero-propulsion System (Northeastern University), Ministry of Education: [grant no VCAME 202004]; Tianjin natural science foundation [grant no 19JCZDJC32300].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zmk完成签到,获得积分10
2秒前
曲蔚然完成签到 ,获得积分10
2秒前
武雨寒完成签到,获得积分20
3秒前
领导范儿应助ZH采纳,获得10
4秒前
5秒前
li完成签到,获得积分10
5秒前
武雨寒发布了新的文献求助10
6秒前
小猪完成签到 ,获得积分10
7秒前
weixiaosi发布了新的文献求助10
8秒前
orixero应助Lice采纳,获得10
9秒前
YingjiaHu完成签到,获得积分10
9秒前
徐徐完成签到,获得积分10
9秒前
10秒前
zhang完成签到,获得积分20
10秒前
星沐影发布了新的文献求助10
11秒前
田様应助小眼儿采纳,获得10
12秒前
lii应助我先睡了采纳,获得10
13秒前
13秒前
zhang发布了新的文献求助10
15秒前
15秒前
大模型应助专一的凛采纳,获得10
16秒前
16秒前
17秒前
aaaaaa发布了新的文献求助10
18秒前
18秒前
展希希发布了新的文献求助20
19秒前
hahhh7完成签到,获得积分10
20秒前
johnny发布了新的文献求助10
20秒前
20秒前
许子健完成签到,获得积分10
21秒前
小眼儿发布了新的文献求助10
23秒前
脑洞疼应助aaaaaa采纳,获得10
24秒前
24秒前
Bryan应助热心小松鼠采纳,获得10
25秒前
unless完成签到,获得积分10
25秒前
冬去春来发布了新的文献求助10
26秒前
俭朴的小熊猫完成签到,获得积分10
26秒前
勤勤的新星完成签到,获得积分10
26秒前
传统的斓完成签到,获得积分10
26秒前
johnny完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966777
求助须知:如何正确求助?哪些是违规求助? 3512284
关于积分的说明 11162496
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874588
科研通“疑难数据库(出版商)”最低求助积分说明 804432