亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi-Supervised Clustering Algorithm Based on Deep Feature Mapping

聚类分析 计算机科学 公制(单位) 人工智能 数据挖掘 相关聚类 样品(材料) 模式识别(心理学) 成对比较 高维数据聚类 嵌入 CURE数据聚类算法 树冠聚类算法 单连锁聚类 数据点 维数之咒 经济 色谱法 化学 运营管理
作者
Xu Xiong,Zhang Chun,Chenggang Wang,Xiaoyan Zhang,Hua Meng
出处
期刊:Intelligent Automation and Soft Computing [Computers, Materials and Continua (Tech Science Press)]
卷期号:37 (1): 815-831
标识
DOI:10.32604/iasc.2023.034656
摘要

Clustering analysis is one of the main concerns in data mining. A common approach to the clustering process is to bring together points that are close to each other and separate points that are away from each other. Therefore, measuring the distance between sample points is crucial to the effectiveness of clustering. Filtering features by label information and measuring the distance between samples by these features is a common supervised learning method to reconstruct distance metric. However, in many application scenarios, it is very expensive to obtain a large number of labeled samples. In this paper, to solve the clustering problem in the few supervised sample and high data dimensionality scenarios, a novel semi-supervised clustering algorithm is proposed by designing an improved prototype network that attempts to reconstruct the distance metric in the sample space with a small amount of pairwise supervised information, such as Must-Link and Cannot-Link, and then cluster the data in the new metric space. The core idea is to make the similar ones closer and the dissimilar ones further away through embedding mapping. Extensive experiments on both real-world and synthetic datasets show the effectiveness of this algorithm. Average clustering metrics on various datasets improved by 8% compared to the comparison algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助Mercy采纳,获得10
5秒前
成就的笑南完成签到 ,获得积分0
8秒前
9秒前
11秒前
谷雨秋发布了新的文献求助10
16秒前
yihanghh完成签到 ,获得积分10
16秒前
jsndjcu发布了新的文献求助10
19秒前
茶叶派完成签到,获得积分10
20秒前
21秒前
Tendency完成签到 ,获得积分0
23秒前
26秒前
ccj完成签到,获得积分20
29秒前
Crw__完成签到,获得积分10
34秒前
trxie完成签到,获得积分20
37秒前
41秒前
ccj发布了新的文献求助10
47秒前
英姑应助yuanyuan采纳,获得50
48秒前
心行完成签到 ,获得积分10
50秒前
oleskarabach完成签到,获得积分20
50秒前
俊逸翠柏完成签到 ,获得积分10
53秒前
bellapp完成签到 ,获得积分10
53秒前
58秒前
沉默的延恶完成签到,获得积分10
59秒前
笨笨的怜雪完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
21度多云完成签到,获得积分10
1分钟前
1分钟前
trophozoite完成签到 ,获得积分10
1分钟前
1分钟前
橘子发布了新的文献求助10
1分钟前
qiuqiu完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
SCIfafafafa发布了新的文献求助10
2分钟前
hua完成签到,获得积分10
2分钟前
于是乎完成签到 ,获得积分10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746419
求助须知:如何正确求助?哪些是违规求助? 5434098
关于积分的说明 15355366
捐赠科研通 4886387
什么是DOI,文献DOI怎么找? 2627215
邀请新用户注册赠送积分活动 1575696
关于科研通互助平台的介绍 1532425