A survey of intelligent optimization algorithms for solving satisfiability problems

可满足性 计算机科学 算法 布尔可满足性问题 约束满足问题 启发式 完备性(序理论) 最优化问题 约束满足 群体智能 数学优化 人工智能 数学 粒子群优化 概率逻辑 数学分析
作者
Lan Yang,Xiaofeng Wang,Hongsheng Ding,Yi Yang,Xingyu Zhao,Lichao Pang
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:45 (1): 445-461 被引量:2
标识
DOI:10.3233/jifs-230073
摘要

Constraint satisfaction problems have a wide range of applications in areas such as basic computer theory research and artificial intelligence, and many major studies in industry are not solved directly, but converted into instances of satisfiability problems for solution. Therefore, the solution of the satisfiability problem is a central problem in many important areas in the future. A large number of solution algorithms for this problem are mainly based on completeness algorithms and heuristic algorithms. Intelligent optimization algorithms with heuristic policies run significantly more efficiently on large-scale instances compared to completeness algorithms. This paper compares the principles, implementation steps, and applications of several major intelligent optimization algorithms in satisfiability problems, analyzes the characteristics of these algorithms, and focuses on the performance in solving satisfiability problems under different constraints. In terms of algorithms, evolutionary algorithms and swarm intelligence algorithms are introduced; in terms of applications, the solution to the satisfiability problem is studied. At the same time, the performance of the listed intelligent optimization algorithms in applications is analyzed in detail in terms of the direction of improvement of the algorithms, advantages and disadvantages and comparison algorithms, respectively, and the future application of intelligent optimization algorithms in satisfiability problems is prospected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小田心发布了新的文献求助10
刚刚
我要吃饭完成签到,获得积分20
刚刚
刚刚
小王啵啵发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
感谢lsw转发科研通微信,获得积分50
1秒前
1秒前
2秒前
3秒前
3秒前
3秒前
5秒前
科研通AI5应助甜蜜梦琪采纳,获得30
5秒前
123发布了新的文献求助10
5秒前
zho发布了新的文献求助30
5秒前
5秒前
感谢超越转发科研通微信,获得积分50
6秒前
潘婷婷呀发布了新的文献求助10
6秒前
丁傲阳发布了新的文献求助10
6秒前
kuku发布了新的文献求助10
7秒前
7秒前
7秒前
DcQiu科研小白完成签到,获得积分10
7秒前
8秒前
Hello应助QI采纳,获得10
8秒前
skmksd发布了新的文献求助10
9秒前
韩涵发布了新的文献求助10
9秒前
大个应助zqq123采纳,获得10
9秒前
感谢南山转发科研通微信,获得积分50
10秒前
10秒前
chongchong完成签到,获得积分10
10秒前
10秒前
11完成签到,获得积分10
10秒前
xx完成签到,获得积分10
10秒前
贰鸟应助寻雪采纳,获得10
11秒前
12秒前
丘比特应助minever白采纳,获得10
12秒前
陌然浅笑发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514977
求助须知:如何正确求助?哪些是违规求助? 3097303
关于积分的说明 9235135
捐赠科研通 2792262
什么是DOI,文献DOI怎么找? 1532392
邀请新用户注册赠送积分活动 712025
科研通“疑难数据库(出版商)”最低求助积分说明 707090