ICON: An Ontology for Comprehensive Artistic Interpretations

偶像 本体论 计算机科学 口译(哲学) 元数据 符号学 模式(遗传算法) 过程本体 上层本体 基于本体的数据集成 情报检索 万维网 认识论 语义网 哲学 程序设计语言
作者
Bruno Sartini,Sofia Baroncini,Marieke van Erp,Francesca Tomasi,Aldo Gangemi
出处
期刊:Journal on computing and cultural heritage [Association for Computing Machinery]
卷期号:16 (3): 1-38 被引量:7
标识
DOI:10.1145/3594724
摘要

In this work, we introduce ICON, an ontology that models artistic interpretations of artworks’ subject matter (i.e., iconographies) and meanings (i.e., symbols, iconological aspects). Developed by conceptualizing authoritative knowledge and notions taken from Panofsky’s levels of interpretation theory, ICON ontology focuses on the granularity of interpretations. It can be used to describe an interpretation of an artwork from the pre-iconographical, icongraphical, and iconological levels. Its main classes have been aligned to ontologies that come from the domains of cultural descriptions (ArCo, CIDOC-CRM, VIR), semiotics (DOLCE), bibliometrics (CITO), and symbolism (Simulation Ontology), to grant a robust schema that can be extendable using additional classes and properties coming from these ontologies. The ontology was evaluated through competency questions that range from simple recognition on a specific level of interpretation to complex scenarios. Data written using this model was compared to state-of-the-art ontologies and schemas to both highlight the current lack of a domain-specific ontology on art interpretation and show how our work fills some of the current gaps. The ontology is openly available and compliant with FAIR principles. With our ontology, we hope to encourage digital art historians working for cultural institutions in making more detailed linked open data about the content of their artifacts, to exploit the full potential of Semantic Web in linking artworks through not only subjects and common metadata but also specific symbolic interpretations, intrinsic meanings, and the motifs through which their subjects are represented. Additionally, by basing our work on theories made by different art history scholars in the last century, we make sure that their knowledge and studies will not be lost in the transition to the digital, linked open data era.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助Juan_He采纳,获得10
刚刚
慕青应助day_on采纳,获得10
刚刚
Yvan完成签到,获得积分10
1秒前
甜甜语堂完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
科研通AI2S应助过时的冰棍采纳,获得10
3秒前
xing完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
5秒前
junhan发布了新的文献求助10
5秒前
大晨完成签到,获得积分10
6秒前
默默发布了新的文献求助10
6秒前
小马甲应助Corrine采纳,获得10
7秒前
野性的曼香完成签到,获得积分10
7秒前
甜甜语堂发布了新的文献求助10
7秒前
科研通AI2S应助诚心的怜阳采纳,获得10
7秒前
调研昵称发布了新的文献求助10
8秒前
儒雅大象发布了新的文献求助10
8秒前
9秒前
高挑的洋葱完成签到,获得积分10
10秒前
小蘑菇应助林夕君采纳,获得10
10秒前
李嘉图完成签到,获得积分10
10秒前
11秒前
12秒前
Orange应助万幸鹿采纳,获得10
13秒前
JamesPei应助day_on采纳,获得30
14秒前
上官若男应助勤劳的沛山采纳,获得10
14秒前
乐乐应助甜甜语堂采纳,获得10
14秒前
Soleil完成签到,获得积分10
14秒前
镜哥完成签到,获得积分10
15秒前
leozhe发布了新的文献求助10
15秒前
wanci应助刘宁采纳,获得10
15秒前
NexusExplorer应助Wang采纳,获得10
15秒前
16秒前
17秒前
懵懂的怀绿完成签到,获得积分10
18秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262319
求助须知:如何正确求助?哪些是违规求助? 2903010
关于积分的说明 8323831
捐赠科研通 2573054
什么是DOI,文献DOI怎么找? 1398041
科研通“疑难数据库(出版商)”最低求助积分说明 653988
邀请新用户注册赠送积分活动 632568