摘要
Abstract Let 𝔽 q {\mathbb{F}_{q}} be the finite field of odd characteristic p with q elements ( q = p n {q=p^{n}} , n ∈ ℕ {n\in\mathbb{N}} ) and let 𝔽 q * {\mathbb{F}_{q}^{*}} represent the set of nonzero elements of 𝔽 q {\mathbb{F}_{q}} . By making use of the Smith normal form of exponent matrices, we obtain an explicit formula for the number of rational points on the variety defined by the following system of equations over 𝔽 q {\mathbb{F}_{q}} : { ∑ i = 1 r a i ( 1 ) x 1 e i 1 ( 1 ) ⋯ x n e i n ( 1 ) = b 1 , ∑ j ′ = 0 t - 1 ∑ i ′ = 1 r j ′ + 1 - r j ′ a r j ′ + i ′ ( 2 ) x 1 e r j ′ + i ′ , 1 ( 2 ) ⋯ x n j ′ + 1 e r j ′ + i ′ , n j ′ + 1 ( 2 ) = b 2 , \left\{\begin{aligned} &\displaystyle\sum_{i=1}^{r}a^{(1)}_{i}x_{1}^{e_{i1}^{(% 1)}}\cdots x_{n}^{e_{in}^{(1)}}=b_{1},\\ &\displaystyle\sum^{t-1}_{j^{\prime}=0}\sum^{r_{j^{\prime}+1}-r_{j^{\prime}}}_% {i^{\prime}=1}a^{(2)}_{r_{j^{\prime}}+i^{\prime}}x_{1}^{e_{r_{j^{\prime}}+i^{% \prime},1}^{(2)}}\cdots x_{n_{{j^{\prime}}+1}}^{e_{r_{j^{\prime}}+i^{\prime},n% _{{j^{\prime}}+1}}^{(2)}}=b_{2},\end{aligned}\right.\vspace*{1mm} where b i ∈ 𝔽 q {b_{i}\in\mathbb{F}_{q}} ( i = 1 , 2 {i=1,2} ), t ∈ ℕ {t\in\mathbb{N}} , 0 = n 0 < n 1 < n 2 < ⋯ < n t , 0=n_{0}<n_{1}<n_{2}<\cdots<n_{t},\vspace*{1mm} n k - 1 < n ≤ n k {n_{k-1}<n\leq n_{k}} for some 1 ≤ k ≤ t {1\leq k\leq t} , 0 = r 0 < r 1 < r 2 < ⋯ < r t , 0=r_{0}<r_{1}<r_{2}<\cdots<r_{t},\vspace*{1mm} a i ( 1 ) ∈ 𝔽 q * {a^{(1)}_{i}\in\mathbb{F}_{q}^{*}} for i ∈ { 1 , … , r } {i\in\{1,\ldots,r\}} , a i ′ ( 2 ) ∈ 𝔽 q * {a^{(2)}_{i^{\prime}}\in\mathbb{F}_{q}^{*}} for i ′ ∈ { 1 , … , r t } {{i^{\prime}}\in\{1,\ldots,r_{t}\}} , and the exponent of each variable is a positive integer. This generalizes the results obtained previously by Wolfmann, Sun, Cao, and others. Our result also gives a partial answer to an open problem raised by Hu, Hong and Zhao [S. N. Hu, S. F. Hong and W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory 156 2015, 135–153].