乙炔
乙烯
催化作用
氢
X射线光电子能谱
铜
无机化学
材料科学
碳化物
杂质
金属
化学
化学工程
有机化学
冶金
工程类
作者
Aonan Zeng,Chenyang Lu,Bo Xu,Anjie Wang,Ying‐Ya Liu,Zhichao Sun,Yao Wang
摘要
The removal of acetylene impurities is indispensable in the production of ethylene. An Ag-promoted Pd catalyst is industrially used to remove acetylene impurities by selective hydrogenation. It is highly desirable to replace Pd with non-precious metals. In the present investigation, CuO particles, which are most frequently used as the precursors for Cu-based catalysts, were prepared through the solution-based chemical precipitation method and used to prepare high-performance catalysts for selective hydrogenation of acetylene in large excess ethylene. The non-precious metal catalyst was prepared by treating CuO particles with acetylene-containing gas (0.5 vol% C2H2/Ar) at 120 °C and subsequent hydrogen reduction at 150 °C. The obtained catalyst was tested in selective hydrogenation of acetylene in a large excess of ethylene (0.72 vol% CH4 as the internal standard, 0.45 vol% C2H2, 88.83 vol% C2H4, 10.00 vol% H2). It exhibited significantly higher activity than the counterpart of Cu metals, achieving 100% conversion of acetylene without ethylene loss at 110 °C and atmospheric pressure. The characterization by means of XRD, XPS, TEM, H2-TPR, CO-FTIR, and EPR verified the formation of an interstitial copper carbide (CuxC), which was responsible for the enhanced hydrogenation activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI