Minimum-Time Rendezvous via Simplified Initial Costate Normalization and Auxiliary Orbital Transfer

规范化(社会学) 轨道机动 轨道力学 会合 计算机科学 传输(计算) 控制理论(社会学) 物理 应用数学 数学 航天器 并行计算 天文 人工智能 卫星 人类学 社会学 控制(管理)
作者
Guo Xiang,Di Wu,Fanghua Jiang
出处
期刊:Journal of Guidance Control and Dynamics [American Institute of Aeronautics and Astronautics]
卷期号:: 1-10 被引量:4
标识
DOI:10.2514/1.g007268
摘要

No AccessEngineering NotesMinimum-Time Rendezvous via Simplified Initial Costate Normalization and Auxiliary Orbital TransferXiang Guo, Di Wu and Fanghua JiangXiang Guo https://orcid.org/0000-0002-3288-8070Tsinghua University, 100084 Beijing, People's Republic of China, Di WuTsinghua University, 100084 Beijing, People's Republic of China and Fanghua JiangTsinghua University, 100084 Beijing, People's Republic of ChinaPublished Online:4 May 2023https://doi.org/10.2514/1.G007268SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Rayman M. D., Fraschetti T. C., Raymond C. A. and Russell C. T., "Dawn: A Mission in Development for Exploration of Main Belt Asteroids Vesta and Ceres," Acta Astronautica, Vol. 58, No. 11, 2006, pp. 605–616. https://doi.org/10.1016/j.actaastro.2006.01.014 CrossrefGoogle Scholar[2] Watanabe S.-I., Tsuda Y., Yoshikawa M., Tanaka S., Saiki T. and Nakazawa S., "Hayabusa2 Mission Overview," Space Science Reviews, Vol. 208, Nos. 1–4, 2017, pp. 3–16. https://doi.org/10.1007/s11214-017-0377-1 Google Scholar[3] Cheng A. F., Rivkin A. S., Michel P., Atchison J., Barnouin O., Benner L., Chabot N. L., Ernst C., Fahnestock E. G., Kueppers M., Pravec P., Rainey E., Richardson D. C., Stickle A. M. and Thomas C., "AIDA DART Asteroid Deflection Test: Planetary Defense and Science Objectives," Planetary and Space Science, Vol. 157, Aug. 2018, pp. 104–115. https://doi.org/10.1016/j.pss.2018.02.015 CrossrefGoogle Scholar[4] Pan B., Pan X. and Lu P., "Finding Best Solution in Low-Thrust Trajectory Optimization by Two-Phase Homotopy," Journal of Spacecraft and Rockets, Vol. 56, No. 1, 2019, pp. 283–291. https://doi.org/10.2514/1.A34144 LinkGoogle Scholar[5] Wu D., Cheng L. and Li J., "Warm-Start Multihomotopic Optimization for Low-Thrust Many-Revolution Trajectories," IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 6, 2020, pp. 4478–4490. https://doi.org/10.1109/TAES.2020.2991704 CrossrefGoogle Scholar[6] Betts J. T., "Survey of Numerical Methods for Trajectory Optimization," Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998, pp. 193–207. https://doi.org/10.2514/2.4231 LinkGoogle Scholar[7] Enright P. J. and Conway B. A., "Discrete Approximations to Optimal Trajectories Using Direct Transcription and Nonlinear Programming," Journal of Guidance, Control, and Dynamics, Vol. 15, No. 4, 1992, pp. 994–1002. https://doi.org/10.2514/3.20934 LinkGoogle Scholar[8] Wang Y. and Topputo F., "Indirect Optimization of Power-Limited Asteroid Rendezvous Trajectories," Journal of Guidance, Control, and Dynamics, Vol. 45, No. 5, 2022, pp. 962–971. https://doi.org/10.2514/1.G006179 LinkGoogle Scholar[9] Morante D., Sanjurjo Rivo M. and Soler M., "A Survey on Low-Thrust Trajectory Optimization Approaches," Aerospace, Vol. 8, No. 3, 2021, p. 88. https://doi.org/10.3390/aerospace8030088 CrossrefGoogle Scholar[10] Tang G. and Hauser K., "A Data-Driven Indirect Method for Nonlinear Optimal Control," Astrodynamics, Vol. 3, No. 4, 2019, pp. 345–359. https://doi.org/10.1007/s42064-019-0051-3 CrossrefGoogle Scholar[11] Jiang F., Baoyin H. and Li J., "Practical Techniques for Low-Thrust Trajectory Optimization with Homotopic Approach," Journal of Guidance, Control, and Dynamics, Vol. 35, No. 1, 2012, pp. 245–258. https://doi.org/10.2514/1.52476 LinkGoogle Scholar[12] Jawaharlal Ayyanathan P. and Taheri E., "Mapped Adjoint Control Transformation Method for Low-Thrust Trajectory Design," Acta Astronautica, Vol. 193, April 2022, pp. 418–431. https://doi.org/10.1016/j.actaastro.2021.12.019 CrossrefGoogle Scholar[13] Benson D. A., Huntington G. T., Thorvaldsen T. P. and Rao A. V., "Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method," Journal of Guidance, Control, and Dynamics, Vol. 29, No. 6, 2006, pp. 1435–1440. https://doi.org/10.2514/1.20478 LinkGoogle Scholar[14] Dixon L. C. W. and Bartholomew-Biggs M. C., "Adjoint-Control Transformations for Solving Practical Optimal Control Problems," Optimal Control Applications and Methods, Vol. 2, No. 4, 1981, pp. 365–381. https://doi.org/10.1002/oca.4660020405 CrossrefGoogle Scholar[15] Taheri E., Li N. I. and Kolmanovsky I., "Co-State Initialization for the Minimum-Time Low-Thrust Trajectory Optimization," Advances in Space Research, Vol. 59, No. 9, 2017, pp. 2360–2373. https://doi.org/10.1016/j.asr.2017.02.010 CrossrefGoogle Scholar[16] Skamangas E. E., Lawton J. A. and Black J. T., "Analytic Costate Initialization from Rough State-Trajectory Estimates," Journal of Guidance, Control, and Dynamics, Vol. 44, No. 12, 2021, pp. 2318–2326. https://doi.org/10.2514/1.G005224 LinkGoogle Scholar[17] Jiang F., Tang G. and Li J., "Improving Low-Thrust Trajectory Optimization by Adjoint Estimation with Shape-Based Path," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 12, 2017, pp. 3282–3289. https://doi.org/10.2514/1.G002803 LinkGoogle Scholar[18] Wu D., Cheng L., Jiang F. and Li J., "Analytical Costate Estimation by a Reference Trajectory-Based Least-Squares Method," Journal of Guidance, Control, and Dynamics, Vol. 45, No. 8, 2022, pp. 1529–1537. https://doi.org/10.2514/1.G006502 LinkGoogle Scholar[19] Vasile M., De Pascale P. and Casotto S., "On the Optimality of a Shape-Based Approach Based on Pseudo-Equinoctial Elements," Acta Astronautica, Vol. 61, Nos. 1–6, 2007, pp. 286–297. https://doi.org/10.1016/j.actaastro.2007.01.017 CrossrefGoogle Scholar[20] Lu P., Griffin B. J., Dukeman G. A. and Chavez F. R., "Rapid Optimal Multiburn Ascent Planning and Guidance," Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, 2008, pp. 1656–1664. https://doi.org/10.2514/1.36084 LinkGoogle Scholar[21] Graham K. F. and Rao A. V., "Minimum-Time Trajectory Optimization of Multiple Revolution Low-Thrust Earth-Orbit Transfers," Journal of Spacecraft and Rockets, Vol. 52, No. 3, 2015, pp. 711–727. https://doi.org/10.2514/1.A33187 LinkGoogle Scholar[22] Pan B., Pan X. and Zhang S., "A New Probability-One Homotopy Method for Solving Minimum-Time Low-Thrust Orbital Transfer Problems," Astrophysics and Space Science, Vol. 363, No. 9, 2018, p. 198. https://doi.org/10.1007/s10509-018-3420-0 CrossrefGoogle Scholar[23] Shen H., Luo Y., Zhu Y. and Huang A., "Dyson Sphere Building: On the Design of the GTOC11 Problem and Summary of the Results," Acta Astronautica, Vol. 202, Jan. 2022, pp. 889–898. https://doi.org/j.actaastro.2022.08.040 Google Scholar[24] Junkins J. L. and Taheri E., "Exploration of Alternative State Vector Choices for Low-Thrust Trajectory Optimization," Journal of Guidance, Control, and Dynamics, Vol. 42, No. 1, 2019, pp. 47–64. https://doi.org/10.2514/1.G003686 LinkGoogle Scholar[25] Gao Y. and Kluever C., "Low-Thrust Interplanetary Orbit Transfers Using Hybrid Trajectory Optimization Method with Multiple Shooting," AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA Paper 2004-5088, 2004. https://doi.org/10.2514/6.2004-5088 Google Scholar[26] Battin R. H., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA, New York, 1999, pp. 191–236. Google Scholar[27] Lewis F. L., Vrabie D. and Syrmos V. L., Optimal Control, Wiley, Hoboken, NJ, 2012, pp. 213–259. Google Scholar[28] Taheri E., Arya V. and Junkins J. L., "Costate Mapping for Indirect Trajectory Optimization," Astrodynamics, Vol. 5, No. 4, 2021, pp. 359–371. https://doi.org/10.1007/s42064-021-0114-0 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Articles in Advance CrossmarkInformationCopyright © 2023 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. KeywordsLow ThrustMinimum-Time RendezvousSimplified Initial Costate NormalizationAuxiliary Orbital TransferAcknowledgmentsThis work was supported by the National Key R&D Program of China (Grant No. 2020YFC2201200) and the National Natural Science Foundation of China (Grant No. 12022214).PDF Received29 September 2022Accepted15 March 2023Published online4 May 2023

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xun应助无情的不正采纳,获得30
刚刚
zasideler完成签到,获得积分10
刚刚
嘉宾发布了新的文献求助10
刚刚
acarbose发布了新的文献求助10
1秒前
2秒前
3秒前
萌新完成签到,获得积分10
4秒前
善学以致用应助wjw采纳,获得10
8秒前
B1t272发布了新的文献求助10
8秒前
10秒前
11秒前
科目三应助bfs采纳,获得10
11秒前
13秒前
14秒前
14秒前
15秒前
16秒前
16秒前
熊大完成签到,获得积分10
17秒前
酷波er应助zz123采纳,获得10
17秒前
Willing发布了新的文献求助10
17秒前
Flex发布了新的文献求助30
18秒前
19秒前
19秒前
个性的涑完成签到 ,获得积分10
21秒前
阿鑫发布了新的文献求助10
22秒前
bfs发布了新的文献求助10
23秒前
李爱国应助吉祥高趙采纳,获得10
24秒前
浮游应助zc采纳,获得10
24秒前
24秒前
dd完成签到,获得积分10
24秒前
凶狠的谷蓝完成签到,获得积分10
25秒前
26秒前
无语的寒天完成签到 ,获得积分10
26秒前
合适冰棍发布了新的文献求助10
27秒前
27秒前
1234hai完成签到 ,获得积分10
28秒前
28秒前
机智断缘发布了新的文献求助10
31秒前
姚友进发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4557433
求助须知:如何正确求助?哪些是违规求助? 3984867
关于积分的说明 12337375
捐赠科研通 3655014
什么是DOI,文献DOI怎么找? 2013520
邀请新用户注册赠送积分活动 1048472
科研通“疑难数据库(出版商)”最低求助积分说明 936862