Space-time modelling of co-seismic and post-seismic landslide hazard via Ensemble Neural Networks.

山崩 危害 地震学 背景(考古学) 人工神经网络 地质学 地震灾害 预警系统 预警系统 计算机科学 地图学 地理 人工智能 古生物学 电信 化学 有机化学
作者
Ashok Dahal,Hakan Tanyas,C.J. van Westen,M. van der Meijde,P. Martin Mai,Raphaël Huser,Luigi Lombardo
标识
DOI:10.5194/egusphere-egu23-3496
摘要

Until now, a full numerical description of the spatio-temporal dynamics of a landslide could be achieved only via physics-based models. The part of the  geoscientific community  developing data-driven model has instead focused on predicting where landslides may occur via susceptibility models. Moreover, they have estimated when landslides may occur via models that belong to the early-warning-system or to the rainfall-threshold themes. In this context, few published researches have explored a joint spatio-temporal model structure. Furthermore, the third element completing the hazard definition, i.e., the landslide size (i.e., areas or volumes), has hardly ever been modeled over space and time. However,  technological advancements in data-driven models have reached a level of maturity that allows to model all three components (Where, When and Size). This work takes this direction and proposes for the first time a solution to the assessment of landslide hazard in a given area by jointly modeling landslide occurrences and their associated areal density per mapping unit, in space and time. To achieve this, we used a spatio-temporal landslide database generated for the Nepalese region affected by the Gorkha earthquake. The model relies on a deep-learning architecture trained using an Ensemble Neural Network, where the landslide occurrences and densities are aggregated over a squared mapping unit of 1x1 km and classified/regressed against a nested 30~m lattice. At the nested level, we have expressed predisposing and triggering factors. As for the temporal units, we have used an approximately 6-month resolution. The results are promising as our model performs satisfactorily both in the susceptibility (AUC = 0.93) and density prediction (Pearson r = 0.93) tasks. This model takes a significant distance from the common susceptibility literature, proposing an integrated framework for hazard modeling in a data-driven context.To promote reproducibility and repeatability of the analyses in this work, we share data and codes in a GitHub repository accessible from this link: https://github.com/ashokdahal/LandslideHazard. 

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li发布了新的文献求助10
刚刚
SciGPT应助大白采纳,获得10
1秒前
大吴克发布了新的文献求助10
1秒前
pcm完成签到,获得积分10
1秒前
彭于晏应助Ssyong采纳,获得10
1秒前
CC发布了新的文献求助10
1秒前
宇少爱学习哟完成签到,获得积分10
2秒前
2秒前
Amber应助曹梦梦采纳,获得10
2秒前
科研通AI5应助平淡南霜采纳,获得10
3秒前
小刘不笨发布了新的文献求助10
3秒前
3秒前
GWM发布了新的文献求助30
3秒前
MADKAI发布了新的文献求助10
3秒前
novia完成签到,获得积分10
3秒前
东郭南松发布了新的文献求助10
4秒前
经法发布了新的文献求助10
4秒前
韭菜盒子发布了新的文献求助10
4秒前
donk完成签到 ,获得积分10
5秒前
传奇3应助lx采纳,获得10
5秒前
6秒前
华仔应助bluer采纳,获得10
6秒前
poo1900完成签到,获得积分10
6秒前
ssx完成签到,获得积分10
6秒前
6秒前
xuanxuan完成签到,获得积分10
6秒前
CyrusSo524完成签到,获得积分10
6秒前
6秒前
格格星完成签到,获得积分10
7秒前
jackish完成签到,获得积分10
7秒前
7秒前
7秒前
英姑应助温柔若采纳,获得10
7秒前
8秒前
熠熠完成签到,获得积分10
10秒前
wangping发布了新的文献求助10
10秒前
李爱国应助小豆芽儿采纳,获得10
10秒前
11秒前
11秒前
FFF完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678