Space-time modelling of co-seismic and post-seismic landslide hazard via Ensemble Neural Networks.

山崩 危害 地震学 背景(考古学) 人工神经网络 地质学 地震灾害 预警系统 预警系统 计算机科学 地图学 地理 人工智能 有机化学 化学 古生物学 电信
作者
Ashok Dahal,Hakan Tanyas,C.J. van Westen,M. van der Meijde,P. Martin Mai,Raphaël Huser,Luigi Lombardo
标识
DOI:10.5194/egusphere-egu23-3496
摘要

Until now, a full numerical description of the spatio-temporal dynamics of a landslide could be achieved only via physics-based models. The part of the  geoscientific community  developing data-driven model has instead focused on predicting where landslides may occur via susceptibility models. Moreover, they have estimated when landslides may occur via models that belong to the early-warning-system or to the rainfall-threshold themes. In this context, few published researches have explored a joint spatio-temporal model structure. Furthermore, the third element completing the hazard definition, i.e., the landslide size (i.e., areas or volumes), has hardly ever been modeled over space and time. However,  technological advancements in data-driven models have reached a level of maturity that allows to model all three components (Where, When and Size). This work takes this direction and proposes for the first time a solution to the assessment of landslide hazard in a given area by jointly modeling landslide occurrences and their associated areal density per mapping unit, in space and time. To achieve this, we used a spatio-temporal landslide database generated for the Nepalese region affected by the Gorkha earthquake. The model relies on a deep-learning architecture trained using an Ensemble Neural Network, where the landslide occurrences and densities are aggregated over a squared mapping unit of 1x1 km and classified/regressed against a nested 30~m lattice. At the nested level, we have expressed predisposing and triggering factors. As for the temporal units, we have used an approximately 6-month resolution. The results are promising as our model performs satisfactorily both in the susceptibility (AUC = 0.93) and density prediction (Pearson r = 0.93) tasks. This model takes a significant distance from the common susceptibility literature, proposing an integrated framework for hazard modeling in a data-driven context.To promote reproducibility and repeatability of the analyses in this work, we share data and codes in a GitHub repository accessible from this link: https://github.com/ashokdahal/LandslideHazard. 

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
3秒前
dz完成签到,获得积分10
3秒前
5秒前
lzj发布了新的文献求助10
5秒前
7秒前
fruchtjelly完成签到,获得积分20
8秒前
任性映秋发布了新的文献求助10
8秒前
yutian928发布了新的文献求助10
9秒前
9秒前
dz发布了新的文献求助10
10秒前
11秒前
fruchtjelly发布了新的文献求助10
11秒前
11秒前
Truman发布了新的文献求助10
13秒前
14秒前
bkagyin应助化学y采纳,获得10
14秒前
Jasper应助舒心冷珍采纳,获得10
15秒前
16秒前
FashionBoy应助风趣的胜采纳,获得10
16秒前
16秒前
自觉笑南完成签到,获得积分10
17秒前
18秒前
闷闷应助abc采纳,获得10
18秒前
18秒前
留胡子的代天完成签到,获得积分10
18秒前
19秒前
19秒前
2799完成签到,获得积分10
21秒前
然然然完成签到 ,获得积分10
23秒前
23秒前
GOAT发布了新的文献求助10
23秒前
衡山后学祝晓钰完成签到,获得积分10
24秒前
英姑应助任性映秋采纳,获得10
24秒前
希望天下0贩的0应助Chen采纳,获得10
26秒前
limin发布了新的文献求助20
28秒前
东风徐来完成签到,获得积分10
29秒前
孤海未蓝发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181974
求助须知:如何正确求助?哪些是违规求助? 4368782
关于积分的说明 13604227
捐赠科研通 4220207
什么是DOI,文献DOI怎么找? 2314547
邀请新用户注册赠送积分活动 1313259
关于科研通互助平台的介绍 1261945