Space-time modelling of co-seismic and post-seismic landslide hazard via Ensemble Neural Networks.

山崩 危害 地震学 背景(考古学) 人工神经网络 地质学 地震灾害 预警系统 预警系统 计算机科学 地图学 地理 人工智能 古生物学 电信 化学 有机化学
作者
Ashok Dahal,Hakan Tanyas,C.J. van Westen,M. van der Meijde,P. Martin Mai,Raphaël Huser,Luigi Lombardo
标识
DOI:10.5194/egusphere-egu23-3496
摘要

Until now, a full numerical description of the spatio-temporal dynamics of a landslide could be achieved only via physics-based models. The part of the  geoscientific community  developing data-driven model has instead focused on predicting where landslides may occur via susceptibility models. Moreover, they have estimated when landslides may occur via models that belong to the early-warning-system or to the rainfall-threshold themes. In this context, few published researches have explored a joint spatio-temporal model structure. Furthermore, the third element completing the hazard definition, i.e., the landslide size (i.e., areas or volumes), has hardly ever been modeled over space and time. However,  technological advancements in data-driven models have reached a level of maturity that allows to model all three components (Where, When and Size). This work takes this direction and proposes for the first time a solution to the assessment of landslide hazard in a given area by jointly modeling landslide occurrences and their associated areal density per mapping unit, in space and time. To achieve this, we used a spatio-temporal landslide database generated for the Nepalese region affected by the Gorkha earthquake. The model relies on a deep-learning architecture trained using an Ensemble Neural Network, where the landslide occurrences and densities are aggregated over a squared mapping unit of 1x1 km and classified/regressed against a nested 30~m lattice. At the nested level, we have expressed predisposing and triggering factors. As for the temporal units, we have used an approximately 6-month resolution. The results are promising as our model performs satisfactorily both in the susceptibility (AUC = 0.93) and density prediction (Pearson r = 0.93) tasks. This model takes a significant distance from the common susceptibility literature, proposing an integrated framework for hazard modeling in a data-driven context.To promote reproducibility and repeatability of the analyses in this work, we share data and codes in a GitHub repository accessible from this link: https://github.com/ashokdahal/LandslideHazard. 

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助彩色夏波采纳,获得10
1秒前
MaLou完成签到,获得积分10
1秒前
1秒前
干净若灵发布了新的文献求助10
1秒前
1秒前
2秒前
坚强的飞凤完成签到,获得积分20
2秒前
安息香完成签到,获得积分10
2秒前
研友_VZG7GZ应助无辜群众采纳,获得10
3秒前
3秒前
4秒前
酷波er应助fan采纳,获得10
5秒前
心理咨熊师完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
明亮的松鼠完成签到,获得积分10
7秒前
古月发布了新的文献求助10
7秒前
灵巧越泽发布了新的文献求助10
8秒前
蓝天发布了新的文献求助10
8秒前
李嘿嘿发布了新的文献求助10
8秒前
evvj发布了新的文献求助10
8秒前
火星上的羽毛完成签到,获得积分10
9秒前
骄傲yy发布了新的文献求助30
10秒前
yyyyy发布了新的文献求助10
11秒前
737发布了新的文献求助10
11秒前
Sun_Y完成签到,获得积分10
11秒前
wondor1111发布了新的文献求助10
11秒前
12秒前
缥缈芷珍完成签到,获得积分10
12秒前
科研通AI6应助丫丫采纳,获得10
12秒前
一杯半茶完成签到,获得积分10
12秒前
可爱的函函应助朴实钥匙采纳,获得10
12秒前
科研通AI2S应助呼呼采纳,获得10
12秒前
lim发布了新的文献求助20
13秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601210
求助须知:如何正确求助?哪些是违规求助? 4686646
关于积分的说明 14845466
捐赠科研通 4679924
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506091
关于科研通互助平台的介绍 1471266