Space-time modelling of co-seismic and post-seismic landslide hazard via Ensemble Neural Networks.

山崩 危害 地震学 背景(考古学) 人工神经网络 地质学 地震灾害 预警系统 预警系统 计算机科学 地图学 地理 人工智能 有机化学 化学 古生物学 电信
作者
Ashok Dahal,Hakan Tanyas,C.J. van Westen,M. van der Meijde,P. Martin Mai,Raphaël Huser,Luigi Lombardo
标识
DOI:10.5194/egusphere-egu23-3496
摘要

Until now, a full numerical description of the spatio-temporal dynamics of a landslide could be achieved only via physics-based models. The part of the  geoscientific community  developing data-driven model has instead focused on predicting where landslides may occur via susceptibility models. Moreover, they have estimated when landslides may occur via models that belong to the early-warning-system or to the rainfall-threshold themes. In this context, few published researches have explored a joint spatio-temporal model structure. Furthermore, the third element completing the hazard definition, i.e., the landslide size (i.e., areas or volumes), has hardly ever been modeled over space and time. However,  technological advancements in data-driven models have reached a level of maturity that allows to model all three components (Where, When and Size). This work takes this direction and proposes for the first time a solution to the assessment of landslide hazard in a given area by jointly modeling landslide occurrences and their associated areal density per mapping unit, in space and time. To achieve this, we used a spatio-temporal landslide database generated for the Nepalese region affected by the Gorkha earthquake. The model relies on a deep-learning architecture trained using an Ensemble Neural Network, where the landslide occurrences and densities are aggregated over a squared mapping unit of 1x1 km and classified/regressed against a nested 30~m lattice. At the nested level, we have expressed predisposing and triggering factors. As for the temporal units, we have used an approximately 6-month resolution. The results are promising as our model performs satisfactorily both in the susceptibility (AUC = 0.93) and density prediction (Pearson r = 0.93) tasks. This model takes a significant distance from the common susceptibility literature, proposing an integrated framework for hazard modeling in a data-driven context.To promote reproducibility and repeatability of the analyses in this work, we share data and codes in a GitHub repository accessible from this link: https://github.com/ashokdahal/LandslideHazard. 

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
情怀应助高大的高山采纳,获得10
2秒前
3秒前
飞快的从彤完成签到 ,获得积分20
3秒前
4秒前
0713发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
6秒前
Alice0210发布了新的文献求助10
7秒前
英姑应助胡涵暄采纳,获得10
7秒前
善学以致用应助无非采纳,获得10
8秒前
孤独的太清完成签到 ,获得积分10
8秒前
涵泽发布了新的文献求助10
9秒前
9秒前
Suyx发布了新的文献求助10
9秒前
10秒前
ding应助Antares采纳,获得10
10秒前
田様应助烂漫凝竹采纳,获得10
10秒前
科研通AI6应助cjch2025采纳,获得10
10秒前
未道发布了新的文献求助10
11秒前
星辰大海应助xiaobai采纳,获得10
11秒前
天将明完成签到,获得积分10
11秒前
12秒前
13秒前
科研通AI6应助djbj2022采纳,获得10
13秒前
xiaohuang发布了新的文献求助10
13秒前
vividkingking发布了新的文献求助10
13秒前
NexusExplorer应助吴念采纳,获得10
15秒前
15秒前
KKKZ完成签到,获得积分10
16秒前
大胆傲芙完成签到,获得积分10
17秒前
今后应助高宇晖采纳,获得10
17秒前
凉秋气爽完成签到,获得积分10
18秒前
18秒前
盖亚奇应助ocean采纳,获得20
19秒前
浮游应助天将明采纳,获得10
20秒前
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342918
求助须知:如何正确求助?哪些是违规求助? 4478608
关于积分的说明 13940254
捐赠科研通 4375531
什么是DOI,文献DOI怎么找? 2404114
邀请新用户注册赠送积分活动 1396625
关于科研通互助平台的介绍 1368965