Space-time modelling of co-seismic and post-seismic landslide hazard via Ensemble Neural Networks.

山崩 危害 地震学 背景(考古学) 人工神经网络 地质学 地震灾害 预警系统 预警系统 计算机科学 地图学 地理 人工智能 古生物学 电信 化学 有机化学
作者
Ashok Dahal,Hakan Tanyas,C.J. van Westen,M. van der Meijde,P. Martin Mai,Raphaël Huser,Luigi Lombardo
标识
DOI:10.5194/egusphere-egu23-3496
摘要

Until now, a full numerical description of the spatio-temporal dynamics of a landslide could be achieved only via physics-based models. The part of the  geoscientific community  developing data-driven model has instead focused on predicting where landslides may occur via susceptibility models. Moreover, they have estimated when landslides may occur via models that belong to the early-warning-system or to the rainfall-threshold themes. In this context, few published researches have explored a joint spatio-temporal model structure. Furthermore, the third element completing the hazard definition, i.e., the landslide size (i.e., areas or volumes), has hardly ever been modeled over space and time. However,  technological advancements in data-driven models have reached a level of maturity that allows to model all three components (Where, When and Size). This work takes this direction and proposes for the first time a solution to the assessment of landslide hazard in a given area by jointly modeling landslide occurrences and their associated areal density per mapping unit, in space and time. To achieve this, we used a spatio-temporal landslide database generated for the Nepalese region affected by the Gorkha earthquake. The model relies on a deep-learning architecture trained using an Ensemble Neural Network, where the landslide occurrences and densities are aggregated over a squared mapping unit of 1x1 km and classified/regressed against a nested 30~m lattice. At the nested level, we have expressed predisposing and triggering factors. As for the temporal units, we have used an approximately 6-month resolution. The results are promising as our model performs satisfactorily both in the susceptibility (AUC = 0.93) and density prediction (Pearson r = 0.93) tasks. This model takes a significant distance from the common susceptibility literature, proposing an integrated framework for hazard modeling in a data-driven context.To promote reproducibility and repeatability of the analyses in this work, we share data and codes in a GitHub repository accessible from this link: https://github.com/ashokdahal/LandslideHazard. 

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王J发布了新的文献求助10
1秒前
Ava应助阿松大采纳,获得10
1秒前
可靠花生完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助30
3秒前
zcx发布了新的文献求助10
3秒前
3秒前
如意代双完成签到 ,获得积分10
4秒前
向乌萨奇学习完成签到,获得积分10
4秒前
JJL发布了新的文献求助10
4秒前
漂亮的雪糕完成签到,获得积分10
5秒前
BIRDY完成签到,获得积分10
5秒前
5秒前
5秒前
xiongyh10完成签到,获得积分10
5秒前
香蕉觅云应助yilin采纳,获得10
6秒前
完美世界应助奔跑西木采纳,获得10
6秒前
lily发布了新的文献求助10
6秒前
lzf发布了新的文献求助10
6秒前
7秒前
斯文的人英完成签到,获得积分10
7秒前
8秒前
8秒前
蓝天发布了新的文献求助10
8秒前
8秒前
9秒前
科研通AI2S应助hky采纳,获得10
9秒前
星辰大海应助king采纳,获得10
11秒前
ZZG应助陌路孤星采纳,获得10
12秒前
murrayss发布了新的文献求助10
12秒前
waerteyang完成签到,获得积分10
13秒前
我叫杨二虎完成签到,获得积分10
13秒前
13秒前
Akim应助小启采纳,获得10
13秒前
阿松大发布了新的文献求助10
13秒前
wanci应助耍酷的友卉采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
谦让元槐发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759448
求助须知:如何正确求助?哪些是违规求助? 5520206
关于积分的说明 15394058
捐赠科研通 4896538
什么是DOI,文献DOI怎么找? 2633747
邀请新用户注册赠送积分活动 1581851
关于科研通互助平台的介绍 1537271