清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Space-time modelling of co-seismic and post-seismic landslide hazard via Ensemble Neural Networks.

山崩 危害 地震学 背景(考古学) 人工神经网络 地质学 地震灾害 预警系统 预警系统 计算机科学 地图学 地理 人工智能 有机化学 化学 古生物学 电信
作者
Ashok Dahal,Hakan Tanyas,C.J. van Westen,M. van der Meijde,P. Martin Mai,Raphaël Huser,Luigi Lombardo
标识
DOI:10.5194/egusphere-egu23-3496
摘要

Until now, a full numerical description of the spatio-temporal dynamics of a landslide could be achieved only via physics-based models. The part of the  geoscientific community  developing data-driven model has instead focused on predicting where landslides may occur via susceptibility models. Moreover, they have estimated when landslides may occur via models that belong to the early-warning-system or to the rainfall-threshold themes. In this context, few published researches have explored a joint spatio-temporal model structure. Furthermore, the third element completing the hazard definition, i.e., the landslide size (i.e., areas or volumes), has hardly ever been modeled over space and time. However,  technological advancements in data-driven models have reached a level of maturity that allows to model all three components (Where, When and Size). This work takes this direction and proposes for the first time a solution to the assessment of landslide hazard in a given area by jointly modeling landslide occurrences and their associated areal density per mapping unit, in space and time. To achieve this, we used a spatio-temporal landslide database generated for the Nepalese region affected by the Gorkha earthquake. The model relies on a deep-learning architecture trained using an Ensemble Neural Network, where the landslide occurrences and densities are aggregated over a squared mapping unit of 1x1 km and classified/regressed against a nested 30~m lattice. At the nested level, we have expressed predisposing and triggering factors. As for the temporal units, we have used an approximately 6-month resolution. The results are promising as our model performs satisfactorily both in the susceptibility (AUC = 0.93) and density prediction (Pearson r = 0.93) tasks. This model takes a significant distance from the common susceptibility literature, proposing an integrated framework for hazard modeling in a data-driven context.To promote reproducibility and repeatability of the analyses in this work, we share data and codes in a GitHub repository accessible from this link: https://github.com/ashokdahal/LandslideHazard. 

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
6秒前
YY给YY的求助进行了留言
6秒前
缓慢的忆枫完成签到,获得积分20
13秒前
zpc猪猪完成签到,获得积分10
14秒前
32秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助10
1分钟前
文献搬运工完成签到 ,获得积分10
1分钟前
GIA完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
陶世立完成签到 ,获得积分10
2分钟前
轻松的甜瓜完成签到,获得积分10
3分钟前
直率的笑翠完成签到 ,获得积分10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
nojego完成签到,获得积分10
3分钟前
光合作用完成签到,获得积分10
3分钟前
4分钟前
4分钟前
YY发布了新的文献求助30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
沉沉完成签到 ,获得积分0
6分钟前
乾坤侠客LW完成签到,获得积分10
6分钟前
Jeongin完成签到,获得积分10
7分钟前
cadcae完成签到,获得积分10
7分钟前
gentleman完成签到,获得积分10
7分钟前
英喆完成签到 ,获得积分10
7分钟前
搬砖王完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
小榕树发布了新的文献求助30
7分钟前
7分钟前
8分钟前
欢呼的续发布了新的文献求助30
8分钟前
洒脱完成签到,获得积分10
8分钟前
xyx发布了新的文献求助10
8分钟前
NexusExplorer应助111采纳,获得10
8分钟前
8分钟前
8分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015226
求助须知:如何正确求助?哪些是违规求助? 3555175
关于积分的说明 11317925
捐赠科研通 3288594
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983