Space-time modelling of co-seismic and post-seismic landslide hazard via Ensemble Neural Networks.

山崩 危害 地震学 背景(考古学) 人工神经网络 地质学 地震灾害 预警系统 预警系统 计算机科学 地图学 地理 人工智能 古生物学 电信 化学 有机化学
作者
Ashok Dahal,Hakan Tanyas,C.J. van Westen,M. van der Meijde,P. Martin Mai,Raphaël Huser,Luigi Lombardo
标识
DOI:10.5194/egusphere-egu23-3496
摘要

Until now, a full numerical description of the spatio-temporal dynamics of a landslide could be achieved only via physics-based models. The part of the  geoscientific community  developing data-driven model has instead focused on predicting where landslides may occur via susceptibility models. Moreover, they have estimated when landslides may occur via models that belong to the early-warning-system or to the rainfall-threshold themes. In this context, few published researches have explored a joint spatio-temporal model structure. Furthermore, the third element completing the hazard definition, i.e., the landslide size (i.e., areas or volumes), has hardly ever been modeled over space and time. However,  technological advancements in data-driven models have reached a level of maturity that allows to model all three components (Where, When and Size). This work takes this direction and proposes for the first time a solution to the assessment of landslide hazard in a given area by jointly modeling landslide occurrences and their associated areal density per mapping unit, in space and time. To achieve this, we used a spatio-temporal landslide database generated for the Nepalese region affected by the Gorkha earthquake. The model relies on a deep-learning architecture trained using an Ensemble Neural Network, where the landslide occurrences and densities are aggregated over a squared mapping unit of 1x1 km and classified/regressed against a nested 30~m lattice. At the nested level, we have expressed predisposing and triggering factors. As for the temporal units, we have used an approximately 6-month resolution. The results are promising as our model performs satisfactorily both in the susceptibility (AUC = 0.93) and density prediction (Pearson r = 0.93) tasks. This model takes a significant distance from the common susceptibility literature, proposing an integrated framework for hazard modeling in a data-driven context.To promote reproducibility and repeatability of the analyses in this work, we share data and codes in a GitHub repository accessible from this link: https://github.com/ashokdahal/LandslideHazard. 

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rou完成签到,获得积分10
1秒前
1秒前
李爱国应助月兮2013采纳,获得10
2秒前
3秒前
3秒前
orixero应助njseu采纳,获得10
3秒前
3秒前
4秒前
汉堡包应助陆千万采纳,获得10
4秒前
5秒前
5秒前
idiot发布了新的文献求助10
5秒前
6秒前
bycq发布了新的文献求助10
6秒前
6秒前
Phosphene应助小郭采纳,获得10
6秒前
6秒前
寻祈完成签到,获得积分20
7秒前
Gauss应助kento采纳,获得100
7秒前
9秒前
娃哈哈发布了新的文献求助10
9秒前
vincen91发布了新的文献求助10
10秒前
10秒前
千万雷同发布了新的文献求助10
11秒前
11秒前
权千万发布了新的文献求助10
11秒前
LemonK完成签到,获得积分10
11秒前
夜空完成签到,获得积分20
12秒前
13秒前
zhangerdan完成签到,获得积分10
13秒前
科学家发布了新的文献求助10
14秒前
清a完成签到,获得积分10
14秒前
15秒前
LemonK发布了新的文献求助20
15秒前
英俊的铭应助高贵的往事采纳,获得10
15秒前
酷波er应助xiaoduan采纳,获得10
16秒前
搜集达人应助ljc采纳,获得10
18秒前
bycq完成签到,获得积分10
18秒前
深情安青应助才哥采纳,获得10
18秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148931
求助须知:如何正确求助?哪些是违规求助? 2799908
关于积分的说明 7837731
捐赠科研通 2457479
什么是DOI,文献DOI怎么找? 1307870
科研通“疑难数据库(出版商)”最低求助积分说明 628312
版权声明 601685