Space-time modelling of co-seismic and post-seismic landslide hazard via Ensemble Neural Networks.

山崩 危害 地震学 背景(考古学) 人工神经网络 地质学 地震灾害 预警系统 预警系统 计算机科学 地图学 地理 人工智能 古生物学 电信 化学 有机化学
作者
Ashok Dahal,Hakan Tanyas,C.J. van Westen,M. van der Meijde,P. Martin Mai,Raphaël Huser,Luigi Lombardo
标识
DOI:10.5194/egusphere-egu23-3496
摘要

Until now, a full numerical description of the spatio-temporal dynamics of a landslide could be achieved only via physics-based models. The part of the  geoscientific community  developing data-driven model has instead focused on predicting where landslides may occur via susceptibility models. Moreover, they have estimated when landslides may occur via models that belong to the early-warning-system or to the rainfall-threshold themes. In this context, few published researches have explored a joint spatio-temporal model structure. Furthermore, the third element completing the hazard definition, i.e., the landslide size (i.e., areas or volumes), has hardly ever been modeled over space and time. However,  technological advancements in data-driven models have reached a level of maturity that allows to model all three components (Where, When and Size). This work takes this direction and proposes for the first time a solution to the assessment of landslide hazard in a given area by jointly modeling landslide occurrences and their associated areal density per mapping unit, in space and time. To achieve this, we used a spatio-temporal landslide database generated for the Nepalese region affected by the Gorkha earthquake. The model relies on a deep-learning architecture trained using an Ensemble Neural Network, where the landslide occurrences and densities are aggregated over a squared mapping unit of 1x1 km and classified/regressed against a nested 30~m lattice. At the nested level, we have expressed predisposing and triggering factors. As for the temporal units, we have used an approximately 6-month resolution. The results are promising as our model performs satisfactorily both in the susceptibility (AUC = 0.93) and density prediction (Pearson r = 0.93) tasks. This model takes a significant distance from the common susceptibility literature, proposing an integrated framework for hazard modeling in a data-driven context.To promote reproducibility and repeatability of the analyses in this work, we share data and codes in a GitHub repository accessible from this link: https://github.com/ashokdahal/LandslideHazard. 

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
机灵的幻灵完成签到 ,获得积分10
2秒前
漫漫完成签到 ,获得积分10
3秒前
3秒前
结王三完成签到,获得积分10
3秒前
3秒前
cryjslong完成签到,获得积分10
3秒前
4秒前
风趣的涵柏完成签到 ,获得积分10
4秒前
pluto应助Kryptonite采纳,获得10
5秒前
RATHER发布了新的文献求助10
7秒前
往好处想完成签到,获得积分10
9秒前
落后若山发布了新的文献求助10
9秒前
伶俐的寒凡完成签到 ,获得积分10
9秒前
畅快谷蕊完成签到,获得积分10
10秒前
英吉利25发布了新的文献求助10
14秒前
隐形曼青应助哆来米采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
18秒前
18秒前
tjzbw完成签到,获得积分10
19秒前
落后若山完成签到,获得积分20
19秒前
小二郎应助踏实小蘑菇采纳,获得10
20秒前
22秒前
清爽白开水完成签到 ,获得积分10
23秒前
shuhe发布了新的文献求助10
23秒前
orixero应助wzx采纳,获得10
23秒前
赘婿应助明理的帆布鞋采纳,获得10
24秒前
25秒前
25秒前
27秒前
0℃冰封完成签到,获得积分10
27秒前
27秒前
29秒前
baihehuakai发布了新的文献求助10
31秒前
31秒前
32秒前
Lucas应助zhuyuan采纳,获得10
33秒前
林夕君发布了新的文献求助10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425289
求助须知:如何正确求助?哪些是违规求助? 4539364
关于积分的说明 14167293
捐赠科研通 4456744
什么是DOI,文献DOI怎么找? 2444284
邀请新用户注册赠送积分活动 1435270
关于科研通互助平台的介绍 1412669