清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Medical Image Segmentation: A Review of Modern Architectures

计算机科学 概化理论 分割 编码器 人工智能 图像分割 任务(项目管理) 机器学习 数据挖掘 模式识别(心理学) 数学 统计 操作系统 经济 管理
作者
Natalia Salpea,Paraskevi Tzouveli,Dimitrios Kollias
出处
期刊:Lecture Notes in Computer Science 卷期号:: 691-708 被引量:39
标识
DOI:10.1007/978-3-031-25082-8_47
摘要

Medical image segmentation involves identifying regions of interest in medical images. In modern times, there is a great need to develop robust computer vision algorithms to perform this task in order to reduce the time and cost of diagnosis and thus to aid quicker prevention and treatment of a variety of diseases. The approaches presented so far, mainly follow the U-type architecture proposed along with the UNet model, they implement encoder-decoder type architectures with fully convolutional networks, and also transformer architectures, exploiting both attention mechanisms and residual learning, and emphasizing information gathering at different resolution scales. Many of these architectural variants achieve significant improvements in quantitative and qualitative results in comparison to the pioneer UNet, while some fail to outperform it. In this work, 11 models designed for medical image segmentation, as well as other types of segmentation, are trained, tested and evaluated on specific evaluation metrics, on four publicly available datasets related to gastric polyps and cell nuclei, which are first augmented to increase their size in an attempt to address the problem of the lack of a large amount of medical data. In addition, their generalizability and the effect of data augmentation on the scores of the experiments are also examined. Finally, conclusions on the performance of the models are provided and future extensions that can improve their performance in the task of medical image segmentation are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
彩色的芷容完成签到 ,获得积分20
30秒前
Criminology34应助科研通管家采纳,获得10
42秒前
Adc应助科研通管家采纳,获得10
42秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
Adc应助科研通管家采纳,获得10
42秒前
xiaofeixia完成签到 ,获得积分10
51秒前
大模型应助外向乌龟采纳,获得10
53秒前
阳光书包完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
阳光书包发布了新的文献求助40
1分钟前
顾矜应助Leon采纳,获得20
1分钟前
ding应助圈地自萌X采纳,获得10
2分钟前
2分钟前
LiangRen完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Adc应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Hello应助刘国建郭菱香采纳,获得10
2分钟前
圈地自萌X发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
小鱼女侠完成签到 ,获得积分10
3分钟前
Vintoe完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Leon发布了新的文献求助20
3分钟前
3分钟前
3分钟前
Leon完成签到,获得积分10
3分钟前
tingalan完成签到,获得积分0
3分钟前
赵一完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715179
求助须知:如何正确求助?哪些是违规求助? 5231114
关于积分的说明 15274068
捐赠科研通 4866203
什么是DOI,文献DOI怎么找? 2612756
邀请新用户注册赠送积分活动 1562941
关于科研通互助平台的介绍 1520304