清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Medical Image Segmentation: A Review of Modern Architectures

计算机科学 概化理论 分割 编码器 人工智能 图像分割 任务(项目管理) 机器学习 数据挖掘 模式识别(心理学) 数学 统计 操作系统 经济 管理
作者
Natalia Salpea,Paraskevi Tzouveli,Dimitrios Kollias
出处
期刊:Lecture Notes in Computer Science 卷期号:: 691-708 被引量:39
标识
DOI:10.1007/978-3-031-25082-8_47
摘要

Medical image segmentation involves identifying regions of interest in medical images. In modern times, there is a great need to develop robust computer vision algorithms to perform this task in order to reduce the time and cost of diagnosis and thus to aid quicker prevention and treatment of a variety of diseases. The approaches presented so far, mainly follow the U-type architecture proposed along with the UNet model, they implement encoder-decoder type architectures with fully convolutional networks, and also transformer architectures, exploiting both attention mechanisms and residual learning, and emphasizing information gathering at different resolution scales. Many of these architectural variants achieve significant improvements in quantitative and qualitative results in comparison to the pioneer UNet, while some fail to outperform it. In this work, 11 models designed for medical image segmentation, as well as other types of segmentation, are trained, tested and evaluated on specific evaluation metrics, on four publicly available datasets related to gastric polyps and cell nuclei, which are first augmented to increase their size in an attempt to address the problem of the lack of a large amount of medical data. In addition, their generalizability and the effect of data augmentation on the scores of the experiments are also examined. Finally, conclusions on the performance of the models are provided and future extensions that can improve their performance in the task of medical image segmentation are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助Developing_human采纳,获得10
11秒前
13秒前
笔墨纸砚完成签到 ,获得积分10
16秒前
18秒前
汉堡包应助酷酷的大米采纳,获得10
23秒前
酷酷的大米完成签到,获得积分10
29秒前
42秒前
49秒前
1分钟前
sweet完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得20
1分钟前
和谐的夏岚完成签到 ,获得积分10
2分钟前
Paris完成签到 ,获得积分10
2分钟前
凤迎雪飘完成签到,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
天天快乐应助Developing_human采纳,获得10
3分钟前
4分钟前
liu发布了新的文献求助10
4分钟前
郭强完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
liu完成签到,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科目三应助科研通管家采纳,获得10
5分钟前
5分钟前
博姐37完成签到 ,获得积分10
5分钟前
6分钟前
小小虾完成签到 ,获得积分10
6分钟前
weiwei完成签到,获得积分10
6分钟前
爱思考的小笨笨完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664563
求助须知:如何正确求助?哪些是违规求助? 4865032
关于积分的说明 15108031
捐赠科研通 4823202
什么是DOI,文献DOI怎么找? 2582042
邀请新用户注册赠送积分活动 1536153
关于科研通互助平台的介绍 1494545