Medical Image Segmentation: A Review of Modern Architectures

计算机科学 概化理论 分割 编码器 人工智能 图像分割 任务(项目管理) 机器学习 数据挖掘 模式识别(心理学) 数学 统计 操作系统 经济 管理
作者
Natalia Salpea,Paraskevi Tzouveli,Dimitrios Kollias
出处
期刊:Lecture Notes in Computer Science 卷期号:: 691-708 被引量:10
标识
DOI:10.1007/978-3-031-25082-8_47
摘要

Medical image segmentation involves identifying regions of interest in medical images. In modern times, there is a great need to develop robust computer vision algorithms to perform this task in order to reduce the time and cost of diagnosis and thus to aid quicker prevention and treatment of a variety of diseases. The approaches presented so far, mainly follow the U-type architecture proposed along with the UNet model, they implement encoder-decoder type architectures with fully convolutional networks, and also transformer architectures, exploiting both attention mechanisms and residual learning, and emphasizing information gathering at different resolution scales. Many of these architectural variants achieve significant improvements in quantitative and qualitative results in comparison to the pioneer UNet, while some fail to outperform it. In this work, 11 models designed for medical image segmentation, as well as other types of segmentation, are trained, tested and evaluated on specific evaluation metrics, on four publicly available datasets related to gastric polyps and cell nuclei, which are first augmented to increase their size in an attempt to address the problem of the lack of a large amount of medical data. In addition, their generalizability and the effect of data augmentation on the scores of the experiments are also examined. Finally, conclusions on the performance of the models are provided and future extensions that can improve their performance in the task of medical image segmentation are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故城发布了新的文献求助10
1秒前
活力菠萝完成签到,获得积分10
1秒前
2秒前
小猫最受发布了新的文献求助10
3秒前
搜集达人应助独行侠采纳,获得10
5秒前
zhangr完成签到 ,获得积分10
6秒前
杨文文关注了科研通微信公众号
9秒前
白了个白完成签到 ,获得积分10
10秒前
奋进中的科研小菜鸟完成签到,获得积分20
11秒前
忧心的雁发布了新的文献求助10
12秒前
ttttttt完成签到,获得积分10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得30
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
坚强亦丝应助科研通管家采纳,获得10
14秒前
走四方应助科研通管家采纳,获得10
14秒前
虾米YYY应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
HEIKU应助科研通管家采纳,获得10
15秒前
15秒前
英姑应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
15秒前
OKAY应助cassie采纳,获得30
15秒前
Islay50ppm完成签到 ,获得积分10
16秒前
16秒前
17秒前
偶然847完成签到,获得积分10
19秒前
20秒前
落尘完成签到,获得积分10
20秒前
20秒前
NexusExplorer应助Bismarck采纳,获得10
21秒前
杨文文发布了新的文献求助10
22秒前
22秒前
悦耳书南完成签到,获得积分10
22秒前
忧心的雁完成签到,获得积分10
25秒前
NancyDee完成签到,获得积分10
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139996
求助须知:如何正确求助?哪些是违规求助? 2790894
关于积分的说明 7796961
捐赠科研通 2447258
什么是DOI,文献DOI怎么找? 1301779
科研通“疑难数据库(出版商)”最低求助积分说明 626340
版权声明 601194