Medical Image Segmentation: A Review of Modern Architectures

计算机科学 概化理论 分割 编码器 人工智能 图像分割 任务(项目管理) 机器学习 数据挖掘 模式识别(心理学) 数学 统计 操作系统 经济 管理
作者
Natalia Salpea,Paraskevi Tzouveli,Dimitrios Kollias
出处
期刊:Lecture Notes in Computer Science 卷期号:: 691-708 被引量:10
标识
DOI:10.1007/978-3-031-25082-8_47
摘要

Medical image segmentation involves identifying regions of interest in medical images. In modern times, there is a great need to develop robust computer vision algorithms to perform this task in order to reduce the time and cost of diagnosis and thus to aid quicker prevention and treatment of a variety of diseases. The approaches presented so far, mainly follow the U-type architecture proposed along with the UNet model, they implement encoder-decoder type architectures with fully convolutional networks, and also transformer architectures, exploiting both attention mechanisms and residual learning, and emphasizing information gathering at different resolution scales. Many of these architectural variants achieve significant improvements in quantitative and qualitative results in comparison to the pioneer UNet, while some fail to outperform it. In this work, 11 models designed for medical image segmentation, as well as other types of segmentation, are trained, tested and evaluated on specific evaluation metrics, on four publicly available datasets related to gastric polyps and cell nuclei, which are first augmented to increase their size in an attempt to address the problem of the lack of a large amount of medical data. In addition, their generalizability and the effect of data augmentation on the scores of the experiments are also examined. Finally, conclusions on the performance of the models are provided and future extensions that can improve their performance in the task of medical image segmentation are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WNL发布了新的文献求助10
刚刚
1秒前
1秒前
玉yu完成签到 ,获得积分10
1秒前
嗯呢完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
3秒前
跳跃难胜发布了新的文献求助10
3秒前
大脸妹完成签到,获得积分10
3秒前
愤怒的源智完成签到 ,获得积分10
4秒前
4秒前
4秒前
ganson完成签到 ,获得积分10
4秒前
4秒前
HopeStar发布了新的文献求助10
5秒前
5秒前
bkagyin应助YL采纳,获得10
6秒前
共享精神应助一直采纳,获得10
6秒前
7秒前
无聊先知完成签到,获得积分10
7秒前
传奇3应助CC采纳,获得10
7秒前
Promise发布了新的文献求助10
7秒前
习习发布了新的文献求助100
8秒前
8秒前
9秒前
someone完成签到,获得积分10
9秒前
9秒前
wanyanjin应助南方姑娘采纳,获得10
9秒前
Star1983发布了新的文献求助10
10秒前
岁月轮回发布了新的文献求助10
10秒前
10秒前
如晴完成签到,获得积分10
10秒前
平淡的芯阳完成签到 ,获得积分10
10秒前
JonyiCheng发布了新的文献求助10
11秒前
11秒前
帅气的乘云完成签到,获得积分10
11秒前
吃点红糖馒头完成签到,获得积分10
12秒前
良月二十一完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678