Medical Image Segmentation: A Review of Modern Architectures

计算机科学 概化理论 分割 编码器 人工智能 图像分割 任务(项目管理) 机器学习 数据挖掘 模式识别(心理学) 数学 统计 操作系统 经济 管理
作者
Natalia Salpea,Paraskevi Tzouveli,Dimitrios Kollias
出处
期刊:Lecture Notes in Computer Science 卷期号:: 691-708 被引量:39
标识
DOI:10.1007/978-3-031-25082-8_47
摘要

Medical image segmentation involves identifying regions of interest in medical images. In modern times, there is a great need to develop robust computer vision algorithms to perform this task in order to reduce the time and cost of diagnosis and thus to aid quicker prevention and treatment of a variety of diseases. The approaches presented so far, mainly follow the U-type architecture proposed along with the UNet model, they implement encoder-decoder type architectures with fully convolutional networks, and also transformer architectures, exploiting both attention mechanisms and residual learning, and emphasizing information gathering at different resolution scales. Many of these architectural variants achieve significant improvements in quantitative and qualitative results in comparison to the pioneer UNet, while some fail to outperform it. In this work, 11 models designed for medical image segmentation, as well as other types of segmentation, are trained, tested and evaluated on specific evaluation metrics, on four publicly available datasets related to gastric polyps and cell nuclei, which are first augmented to increase their size in an attempt to address the problem of the lack of a large amount of medical data. In addition, their generalizability and the effect of data augmentation on the scores of the experiments are also examined. Finally, conclusions on the performance of the models are provided and future extensions that can improve their performance in the task of medical image segmentation are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悲凉的新筠完成签到,获得积分20
2秒前
乐天完成签到,获得积分10
2秒前
活泼听露发布了新的文献求助10
2秒前
3秒前
传奇3应助juqiu采纳,获得10
3秒前
隐形曼青应助sinlar采纳,获得10
3秒前
3秒前
张nmky完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
Hello应助沉静秋尽采纳,获得10
5秒前
Gc发布了新的文献求助10
6秒前
6秒前
biye完成签到 ,获得积分10
6秒前
6秒前
东糸容完成签到,获得积分10
7秒前
退休小行星完成签到,获得积分10
7秒前
勤恳易谙发布了新的文献求助10
8秒前
追梦1998发布了新的文献求助10
8秒前
siina发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
小姚完成签到,获得积分10
9秒前
10秒前
chen123发布了新的文献求助10
10秒前
zzmm发布了新的文献求助10
10秒前
昏睡的嵩应助羊羔蓉采纳,获得10
11秒前
llll完成签到 ,获得积分10
11秒前
feizhuliu完成签到,获得积分10
12秒前
helppppp发布了新的文献求助10
12秒前
13秒前
苗条秋荷完成签到,获得积分20
14秒前
Sindy发布了新的文献求助10
15秒前
Cooper应助退休小行星采纳,获得10
15秒前
15秒前
EnJay0528发布了新的文献求助10
16秒前
413115348完成签到,获得积分10
16秒前
疯不觉完成签到,获得积分10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783962
求助须知:如何正确求助?哪些是违规求助? 5680156
关于积分的说明 15462775
捐赠科研通 4913312
什么是DOI,文献DOI怎么找? 2644592
邀请新用户注册赠送积分活动 1592399
关于科研通互助平台的介绍 1547026