Multi-source domain generalization and adaptation toward cross-subject myoelectric pattern recognition

计算机科学 一般化 适应(眼睛) 领域(数学分析) 可用性 差异(会计) 分歧(语言学) 特征(语言学) 多源 机器学习 人工智能 模式识别(心理学) 数据挖掘 人机交互 统计 数学 会计 数学分析 哲学 物理 业务 光学 语言学
作者
Xuan Zhang,Le Wu,Xu Zhang,Xiang Chen,Chang Li,Xun Chen
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (1): 016050-016050 被引量:3
标识
DOI:10.1088/1741-2552/acb7a0
摘要

Objective.Myoelectric pattern recognition (MPR) has shown satisfactory performance under ideal laboratory conditions. Nevertheless, the individual variances lead to dramatic performance degradation in cross-user MPR applications. It is crucial to enable the myoelectric interface to adapt to multiple users' surface electromyography (sEMG) distributions in practical.Approach.Domain adaptation (DA) is a promising approach to tackle cross-user challenges due to its ability to diminish the divergence between individual users' EMG distributions and escalate model generalization performance. However, existing DA methods in sEMG control are based on single-source domain adaptation (SDA). SDA solely mixes multiple training users' data as a combined source domain and attempts to align with a novel user. This simple data mixing manner ignores the sEMG distribution variations between disparate training users, leading to an insufficient variance elimination and lower performance. To this end, this paper proposes a multi-source synchronize domain adaptation framework with both DA and domain generalization (DG) capability. This multi-source framework aligns each source user and the new user in individual feature spaces, which better transfers the knowledge of existing users to the new user. Moreover, we retain the source-combined data to preserve the effectiveness of SDA. The property was further confirmed by evaluating the performance of the proposed method on data from nine subjects performing six tasks.Main results.Experiment results prove that the proposed multi-source framework achieved both positive DG and DA performance in a cross-user classification manner.Significance.This work demonstrates the usability and feasibility of the proposed multi-source framework in cross-user myoelectric control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助大力的含卉采纳,获得30
1秒前
Mumu完成签到,获得积分10
1秒前
1秒前
刘老师关注了科研通微信公众号
1秒前
小赞芽发布了新的文献求助10
1秒前
2秒前
2秒前
xiaowu完成签到,获得积分10
2秒前
织诗成锦完成签到,获得积分10
3秒前
科研通AI5应助文艺水蜜桃采纳,获得10
3秒前
3秒前
3秒前
科研通AI5应助BILNQPL采纳,获得10
4秒前
流白完成签到,获得积分10
4秒前
4秒前
Yolo完成签到,获得积分20
4秒前
YY应助胖豆采纳,获得10
5秒前
5秒前
jagger发布了新的文献求助10
5秒前
5秒前
6秒前
ChemistryZyh完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
充电宝应助朴素的士晋采纳,获得10
7秒前
7秒前
9秒前
调研昵称发布了新的文献求助10
9秒前
9秒前
9秒前
十万大山兵大大给十万大山兵大大的求助进行了留言
9秒前
9秒前
CodeCraft应助Mumu采纳,获得10
10秒前
飘逸数据线完成签到,获得积分10
10秒前
111发布了新的文献求助10
10秒前
Gauss完成签到,获得积分0
10秒前
丘奇完成签到,获得积分10
10秒前
木子发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762