Multi-source domain generalization and adaptation toward cross-subject myoelectric pattern recognition

计算机科学 一般化 适应(眼睛) 领域(数学分析) 可用性 差异(会计) 分歧(语言学) 特征(语言学) 多源 机器学习 人工智能 模式识别(心理学) 数据挖掘 人机交互 统计 数学 会计 数学分析 哲学 物理 业务 光学 语言学
作者
Xuan Zhang,Le Wu,Xu Zhang,Xiang Chen,Chang Li,Xun Chen
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (1): 016050-016050 被引量:3
标识
DOI:10.1088/1741-2552/acb7a0
摘要

Objective.Myoelectric pattern recognition (MPR) has shown satisfactory performance under ideal laboratory conditions. Nevertheless, the individual variances lead to dramatic performance degradation in cross-user MPR applications. It is crucial to enable the myoelectric interface to adapt to multiple users' surface electromyography (sEMG) distributions in practical.Approach.Domain adaptation (DA) is a promising approach to tackle cross-user challenges due to its ability to diminish the divergence between individual users' EMG distributions and escalate model generalization performance. However, existing DA methods in sEMG control are based on single-source domain adaptation (SDA). SDA solely mixes multiple training users' data as a combined source domain and attempts to align with a novel user. This simple data mixing manner ignores the sEMG distribution variations between disparate training users, leading to an insufficient variance elimination and lower performance. To this end, this paper proposes a multi-source synchronize domain adaptation framework with both DA and domain generalization (DG) capability. This multi-source framework aligns each source user and the new user in individual feature spaces, which better transfers the knowledge of existing users to the new user. Moreover, we retain the source-combined data to preserve the effectiveness of SDA. The property was further confirmed by evaluating the performance of the proposed method on data from nine subjects performing six tasks.Main results.Experiment results prove that the proposed multi-source framework achieved both positive DG and DA performance in a cross-user classification manner.Significance.This work demonstrates the usability and feasibility of the proposed multi-source framework in cross-user myoelectric control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明的泡面完成签到 ,获得积分10
刚刚
畅快的眼神完成签到 ,获得积分10
5秒前
keep完成签到,获得积分10
6秒前
元谷雪应助温眸采纳,获得10
7秒前
时尚的哈密瓜完成签到,获得积分10
8秒前
11秒前
Dongfu_FA完成签到,获得积分10
11秒前
刻苦的新烟完成签到 ,获得积分10
13秒前
文章大发完成签到,获得积分10
16秒前
17秒前
天真醉波完成签到 ,获得积分10
18秒前
不安的白昼完成签到 ,获得积分10
18秒前
兑润泽完成签到,获得积分10
18秒前
19秒前
lihua完成签到 ,获得积分10
21秒前
琮博完成签到,获得积分10
21秒前
21秒前
求知小生完成签到,获得积分10
23秒前
gdgk发布了新的文献求助10
23秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
南北应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得10
25秒前
彭于晏应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
南北应助科研通管家采纳,获得10
25秒前
南北应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
mujin完成签到 ,获得积分10
25秒前
岂识浊醪妙理完成签到,获得积分10
26秒前
27秒前
周而复始完成签到 ,获得积分10
27秒前
甜蜜莫英发布了新的文献求助10
28秒前
29秒前
waqlzq完成签到,获得积分10
29秒前
轩辕一笑发布了新的文献求助10
30秒前
hhhh完成签到,获得积分10
30秒前
jasmine完成签到,获得积分10
31秒前
32秒前
dell完成签到,获得积分10
32秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265756
求助须知:如何正确求助?哪些是违规求助? 2905690
关于积分的说明 8334507
捐赠科研通 2575964
什么是DOI,文献DOI怎么找? 1400298
科研通“疑难数据库(出版商)”最低求助积分说明 654712
邀请新用户注册赠送积分活动 633554