已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-source domain generalization and adaptation toward cross-subject myoelectric pattern recognition

计算机科学 一般化 适应(眼睛) 领域(数学分析) 可用性 差异(会计) 分歧(语言学) 特征(语言学) 多源 机器学习 人工智能 模式识别(心理学) 数据挖掘 人机交互 统计 数学 数学分析 语言学 哲学 物理 会计 光学 业务
作者
Xuan Zhang,Le Wu,Xu Zhang,Xiang Chen,Chang Li,Xun Chen
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (1): 016050-016050 被引量:3
标识
DOI:10.1088/1741-2552/acb7a0
摘要

Objective.Myoelectric pattern recognition (MPR) has shown satisfactory performance under ideal laboratory conditions. Nevertheless, the individual variances lead to dramatic performance degradation in cross-user MPR applications. It is crucial to enable the myoelectric interface to adapt to multiple users' surface electromyography (sEMG) distributions in practical.Approach.Domain adaptation (DA) is a promising approach to tackle cross-user challenges due to its ability to diminish the divergence between individual users' EMG distributions and escalate model generalization performance. However, existing DA methods in sEMG control are based on single-source domain adaptation (SDA). SDA solely mixes multiple training users' data as a combined source domain and attempts to align with a novel user. This simple data mixing manner ignores the sEMG distribution variations between disparate training users, leading to an insufficient variance elimination and lower performance. To this end, this paper proposes a multi-source synchronize domain adaptation framework with both DA and domain generalization (DG) capability. This multi-source framework aligns each source user and the new user in individual feature spaces, which better transfers the knowledge of existing users to the new user. Moreover, we retain the source-combined data to preserve the effectiveness of SDA. The property was further confirmed by evaluating the performance of the proposed method on data from nine subjects performing six tasks.Main results.Experiment results prove that the proposed multi-source framework achieved both positive DG and DA performance in a cross-user classification manner.Significance.This work demonstrates the usability and feasibility of the proposed multi-source framework in cross-user myoelectric control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
111完成签到,获得积分10
1秒前
赘婿应助lvsehx采纳,获得10
1秒前
1秒前
xiaomeng完成签到 ,获得积分10
2秒前
4秒前
4秒前
胡萝卜完成签到,获得积分10
6秒前
热心盼波发布了新的文献求助30
6秒前
7秒前
8秒前
熊泰山发布了新的文献求助10
8秒前
8秒前
11秒前
11秒前
绿野仙踪完成签到,获得积分20
12秒前
英俊的铭应助sunshinegirl采纳,获得10
14秒前
15秒前
111发布了新的文献求助10
15秒前
勤奋的凌香完成签到,获得积分10
16秒前
17秒前
曦小蕊完成签到 ,获得积分10
18秒前
情怀应助会撒娇的如天采纳,获得10
18秒前
PL发布了新的文献求助10
20秒前
大模型应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
sksk完成签到,获得积分10
23秒前
24秒前
sksk发布了新的文献求助30
27秒前
雷雷发布了新的文献求助30
28秒前
优美平凡完成签到,获得积分10
30秒前
32秒前
32秒前
32秒前
lvsehx发布了新的文献求助10
35秒前
果冻小朋友完成签到,获得积分20
35秒前
饱满乐萱发布了新的文献求助10
36秒前
热心盼波完成签到,获得积分10
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994433
求助须知:如何正确求助?哪些是违规求助? 3534839
关于积分的说明 11266585
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749