Statistics of fingerprint minutiae frequency and distribution based on automatic minutiae detection method

细节 指纹(计算) 人工智能 模式识别(心理学) 轮藻(软体动物) 指纹识别 计算机科学 鉴定(生物学) 植物 生物
作者
Mengting Gao,Yunqi Tang,Huan Liu,R. Ma
出处
期刊:Forensic Science International [Elsevier]
卷期号:344: 111572-111572
标识
DOI:10.1016/j.forsciint.2023.111572
摘要

The Daubert case in Philadelphia in 1999 caused a debate about the scientificity of fingerprint evidence. Since then, the current fingerprint identification system has been constantly challenged and questioned. Quantitative identification technology based on the statistics of fingerprint minutiae has become a new research hot spot. In this paper, an automatic detection algorithm is designed to achieve automatic classification of fingerprint minutiae using the deep convolution neural network YOLOv5 model. Then the occurrence frequencies of minutiae are statistically evaluated in 619,297 fingerprint images. The results show that the frequency ranges (unit%) of six types of minutiae per finger are ridge endings [68.49, 70.81], bifurcations [26.37, 27.26], independent ridges [1.533, 1.626], spurs [1.129, 1.198], lakes [0.4588, 0.4963], crossovers [0.3034, 0.3256]. The results also show that there are differences in the distribution frequency of the six types of minutiae in the ten finger positions ( thumb, middle, ring, index and little finger of the left and right hand) and in the four finger patterns ( arch, left loop, right loop and whorl). From the quantitative point of view of fingerprint identification, this paper calculates the number and frequency ranges of six types of minutiae, distinguishes the evaluation value of each type of minutiae, and provides the basic data support for establishing a probability model of fingerprint identification in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路冬卉发布了新的文献求助10
刚刚
Diliam应助369258采纳,获得30
1秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
Lucas应助newnew采纳,获得10
6秒前
李爱国应助LX采纳,获得10
7秒前
小肥发布了新的文献求助10
7秒前
迷路冬卉完成签到,获得积分10
8秒前
9秒前
9秒前
万能图书馆应助狂野夜绿采纳,获得10
10秒前
zz发布了新的文献求助10
12秒前
踏雪飞鸿完成签到,获得积分10
12秒前
13秒前
zhishi发布了新的文献求助10
13秒前
xiaolei001应助激昂的如柏采纳,获得10
14秒前
18秒前
彭于晏应助张张采纳,获得30
19秒前
天天快乐应助成就的钢笔采纳,获得30
19秒前
NN发布了新的文献求助10
20秒前
22秒前
24秒前
万能图书馆应助喵喵不二采纳,获得10
24秒前
lome发布了新的文献求助10
25秒前
gllc发布了新的文献求助10
25秒前
26秒前
狂野夜绿发布了新的文献求助10
27秒前
27秒前
Oreo完成签到,获得积分10
28秒前
keal完成签到,获得积分10
30秒前
Groot发布了新的文献求助10
32秒前
topteng完成签到,获得积分20
32秒前
34秒前
simon发布了新的文献求助10
34秒前
35秒前
希望天下0贩的0应助NN采纳,获得10
36秒前
白白白戊发布了新的文献求助10
36秒前
37秒前
37秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5799295
求助须知:如何正确求助?哪些是违规求助? 5798781
关于积分的说明 15499670
捐赠科研通 4925751
什么是DOI,文献DOI怎么找? 2651626
邀请新用户注册赠送积分活动 1598681
关于科研通互助平台的介绍 1553565