Statistics of fingerprint minutiae frequency and distribution based on automatic minutiae detection method

细节 指纹(计算) 人工智能 模式识别(心理学) 轮藻(软体动物) 指纹识别 计算机科学 鉴定(生物学) 植物 生物
作者
Mengting Gao,Yunqi Tang,Huan Liu,R. Ma
出处
期刊:Forensic Science International [Elsevier BV]
卷期号:344: 111572-111572
标识
DOI:10.1016/j.forsciint.2023.111572
摘要

The Daubert case in Philadelphia in 1999 caused a debate about the scientificity of fingerprint evidence. Since then, the current fingerprint identification system has been constantly challenged and questioned. Quantitative identification technology based on the statistics of fingerprint minutiae has become a new research hot spot. In this paper, an automatic detection algorithm is designed to achieve automatic classification of fingerprint minutiae using the deep convolution neural network YOLOv5 model. Then the occurrence frequencies of minutiae are statistically evaluated in 619,297 fingerprint images. The results show that the frequency ranges (unit%) of six types of minutiae per finger are ridge endings [68.49, 70.81], bifurcations [26.37, 27.26], independent ridges [1.533, 1.626], spurs [1.129, 1.198], lakes [0.4588, 0.4963], crossovers [0.3034, 0.3256]. The results also show that there are differences in the distribution frequency of the six types of minutiae in the ten finger positions ( thumb, middle, ring, index and little finger of the left and right hand) and in the four finger patterns ( arch, left loop, right loop and whorl). From the quantitative point of view of fingerprint identification, this paper calculates the number and frequency ranges of six types of minutiae, distinguishes the evaluation value of each type of minutiae, and provides the basic data support for establishing a probability model of fingerprint identification in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
ZZZ关闭了ZZZ文献求助
1秒前
小小酥被卷了完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
猪猪hero发布了新的文献求助10
6秒前
东木应助yf采纳,获得100
6秒前
冷艳的道天完成签到 ,获得积分10
8秒前
追晚风的人完成签到 ,获得积分10
9秒前
9秒前
暖暖圆圆完成签到 ,获得积分10
9秒前
9秒前
花花发布了新的文献求助10
10秒前
10秒前
gar发布了新的文献求助10
10秒前
无限的山水完成签到 ,获得积分10
11秒前
炎炎夏无声完成签到 ,获得积分10
12秒前
CHSLN完成签到 ,获得积分10
13秒前
liu发布了新的文献求助10
14秒前
15秒前
15秒前
小穆完成签到,获得积分10
16秒前
ratziel发布了新的文献求助10
16秒前
vin应助rita_sun1969采纳,获得40
16秒前
坚定的慕卉完成签到,获得积分10
16秒前
Lucas应助眼睛大尔白采纳,获得10
16秒前
cdercder发布了新的文献求助10
19秒前
持满发布了新的文献求助10
19秒前
科研通AI5应助没有昵称采纳,获得10
20秒前
怡然的乘风完成签到 ,获得积分10
20秒前
CV16完成签到,获得积分10
22秒前
Ren应助宋晓静采纳,获得10
23秒前
浮浮沉沉发布了新的文献求助10
23秒前
25秒前
fei完成签到,获得积分10
25秒前
Toong完成签到,获得积分10
27秒前
27秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531183
关于积分的说明 11252671
捐赠科研通 3269809
什么是DOI,文献DOI怎么找? 1804780
邀请新用户注册赠送积分活动 881885
科研通“疑难数据库(出版商)”最低求助积分说明 809021