A novel self-learning framework for fault identification of wind turbine drive bearings

涡轮机 计算机科学 断层(地质) 鉴定(生物学) 风力发电 人工智能 希尔伯特-黄变换 工程类 聚类分析 故障检测与隔离 机械工程 生物 滤波器(信号处理) 电气工程 地质学 地震学 执行机构 植物 计算机视觉
作者
Jing Yuan,Zeming Liang,Rongxi Wang,Yufan Li,Zhen Wang,Jianmin Gao
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part I: Journal Of Systems And Control Engineering [SAGE Publishing]
卷期号:237 (7): 1296-1312
标识
DOI:10.1177/09596518231153231
摘要

The drive train is one of the core structures of a wind turbine, and its working condition seriously affects the performance quality. It is important to identify the fault pattern of the drive bearings in time to ensure the safety and reliability of the wind turbine. However, in traditional methods, offline modeling and online identification are often fragmented, and such a mechanism limits the adaptive updating of the model. To realize real-time updating and self-learning of the identification model, we proposed a novel self-learning framework for the intelligent fault identification of wind turbine drive bearings. First, a complete ensemble empirical mode decomposition with adaptive noise analysis–based quantification scheme for intrinsic mode function values is proposed. Then, based on the intrinsic mode function values, we offer an attention mechanism for fault feature identification and construct an initial fault pattern database using unsupervised clustering techniques. Second, abnormal data are identified by the proposed artificial immunity–based outlier detection algorithm to determine the type of immune response. Third, we design an automatic update strategy based on incremental learning to realize adaptive creation, deletion, and modification of fault patterns. The proposed intelligent framework is applied to the fault diagnosis of a real offshore wind turbine drive train, showing its advantages in intelligent fault identification and model updating.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
houlingwei发布了新的文献求助30
刚刚
pppyy完成签到,获得积分10
2秒前
KANY应助zero桥采纳,获得30
2秒前
科研通AI6应助zdesfsfa采纳,获得10
2秒前
小粥完成签到,获得积分20
2秒前
liu完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
丘比特应助车宇采纳,获得10
4秒前
小青椒应助KKK采纳,获得50
5秒前
鑫博完成签到 ,获得积分10
5秒前
Ava应助想要有直升机采纳,获得10
6秒前
6秒前
懒羊羊发布了新的文献求助10
7秒前
张飞完成签到 ,获得积分10
8秒前
温柔柜子发布了新的文献求助10
10秒前
kook发布了新的文献求助10
11秒前
彭彭发布了新的文献求助10
11秒前
香蕉觅云应助peiyi采纳,获得10
11秒前
Akim应助fdu_sf采纳,获得10
13秒前
汉堡包应助fdu_sf采纳,获得10
13秒前
深情安青应助fdu_sf采纳,获得10
13秒前
今后应助fdu_sf采纳,获得10
13秒前
小羊羊完成签到,获得积分10
13秒前
科研通AI6应助张诗苑采纳,获得30
14秒前
明镜完成签到,获得积分10
14秒前
温柔柜子完成签到,获得积分10
15秒前
kkkk完成签到,获得积分20
16秒前
17秒前
精明的赛凤完成签到,获得积分10
17秒前
18秒前
JINITAIMEI完成签到,获得积分10
19秒前
哇咔咔发布了新的文献求助20
19秒前
赘婿应助sow采纳,获得10
20秒前
zhonglv7应助VESong采纳,获得10
21秒前
乐乐应助咚巴拉采纳,获得10
21秒前
21秒前
22秒前
Lucas应助kook采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288622
求助须知:如何正确求助?哪些是违规求助? 4440454
关于积分的说明 13824620
捐赠科研通 4322732
什么是DOI,文献DOI怎么找? 2372708
邀请新用户注册赠送积分活动 1368140
关于科研通互助平台的介绍 1332034