A Step-by-Step Guide on How to Construct Quasi-Markov State Models to Study Functional Conformational Changes of Biological Macromolecules

马尔可夫链 主方程 计算机科学 马尔可夫过程 统计物理学 分子动力学 马尔可夫模型 计算化学 数学 化学 物理 机器学习 统计 量子力学 量子
作者
Andrew Kai-hei Yik,Yunrui Qiu,Ilona Christy Unarta,Siqin Cao,Xuhui Huang
标识
DOI:10.1063/9780735425279_010
摘要

Conformational changes play an important role for many biomolecules to perform their functions. In recent years, Markov State Model (MSM) has become a powerful tool to investigate these functional conformational changes by predicting long timescale dynamics from many short molecular dynamics (MD) simulations. In MSM, dynamics are modelled by a first-order master equation, in which a biomolecule undergoes Markovian transitions among conformational states at discrete-time intervals, called lag time. The lag time has to be sufficiently long to build a Markovian model, but this parameter is often bound by the length of MD simulations available for estimating the frequency of interstate transitions. To address this challenge, we recently employed the generalized master equation (GME) formalism (e.g., the quasi-Markov State Model or qMSM) to encode non-Markovian dynamics in a time-dependent memory kernel. When applied to study protein dynamics, our qMSM can be built from MD simulations that are an order-of-magnitude shorter than MSM would have required. The construction of qMSM is more complicated than that of MSM, as time-dependent memory kernels need to be properly extracted from the MD simulation trajectories. In this chapter, we will present a step-by-step guide on how to build qMSM from MD simulation datasets, and the accompanying materials are publicly available on Github: https://github.com/ykhdrew/qMSM_tutorial. We hope this tutorial is useful for researchers who want to apply qMSM and study functional conformational changes in biomolecules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谜迪发布了新的文献求助10
刚刚
林克发布了新的文献求助10
刚刚
小李完成签到,获得积分10
刚刚
小学僧完成签到,获得积分10
刚刚
刚刚
hgdong1684给hgdong1684的求助进行了留言
刚刚
1秒前
1秒前
领导范儿应助英俊纸飞机采纳,获得10
2秒前
Heaven发布了新的文献求助10
2秒前
七七发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
阿拉蕾123发布了新的文献求助10
2秒前
2秒前
无花果应助laozht采纳,获得10
3秒前
酷波er应助完美的绿柏采纳,获得10
3秒前
hhhh发布了新的文献求助10
3秒前
3秒前
思源应助jsl采纳,获得10
3秒前
咖喱发布了新的文献求助10
3秒前
猪猪hero完成签到,获得积分10
3秒前
搜集达人应助峥2采纳,获得10
4秒前
1235656646完成签到,获得积分10
5秒前
李佳笑完成签到,获得积分10
5秒前
信天翁应助老木虫采纳,获得10
5秒前
6秒前
joejoe发布了新的文献求助10
6秒前
咯咚完成签到 ,获得积分0
6秒前
7秒前
7秒前
ztlaky关注了科研通微信公众号
8秒前
8秒前
酷炫迎波完成签到,获得积分10
8秒前
bowen发布了新的文献求助10
8秒前
sannia发布了新的文献求助10
8秒前
9秒前
长孙凌柏完成签到,获得积分10
9秒前
9秒前
今后应助wllzwh采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599540
求助须知:如何正确求助?哪些是违规求助? 4010119
关于积分的说明 12414946
捐赠科研通 3689740
什么是DOI,文献DOI怎么找? 2034025
邀请新用户注册赠送积分活动 1067273
科研通“疑难数据库(出版商)”最低求助积分说明 952284