A Step-by-Step Guide on How to Construct Quasi-Markov State Models to Study Functional Conformational Changes of Biological Macromolecules

马尔可夫链 主方程 计算机科学 马尔可夫过程 统计物理学 分子动力学 马尔可夫模型 计算化学 数学 化学 物理 机器学习 统计 量子力学 量子
作者
Andrew Kai-hei Yik,Yunrui Qiu,Ilona Christy Unarta,Siqin Cao,Xuhui Huang
标识
DOI:10.1063/9780735425279_010
摘要

Conformational changes play an important role for many biomolecules to perform their functions. In recent years, Markov State Model (MSM) has become a powerful tool to investigate these functional conformational changes by predicting long timescale dynamics from many short molecular dynamics (MD) simulations. In MSM, dynamics are modelled by a first-order master equation, in which a biomolecule undergoes Markovian transitions among conformational states at discrete-time intervals, called lag time. The lag time has to be sufficiently long to build a Markovian model, but this parameter is often bound by the length of MD simulations available for estimating the frequency of interstate transitions. To address this challenge, we recently employed the generalized master equation (GME) formalism (e.g., the quasi-Markov State Model or qMSM) to encode non-Markovian dynamics in a time-dependent memory kernel. When applied to study protein dynamics, our qMSM can be built from MD simulations that are an order-of-magnitude shorter than MSM would have required. The construction of qMSM is more complicated than that of MSM, as time-dependent memory kernels need to be properly extracted from the MD simulation trajectories. In this chapter, we will present a step-by-step guide on how to build qMSM from MD simulation datasets, and the accompanying materials are publicly available on Github: https://github.com/ykhdrew/qMSM_tutorial. We hope this tutorial is useful for researchers who want to apply qMSM and study functional conformational changes in biomolecules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sean完成签到,获得积分10
刚刚
木九黎发布了新的文献求助10
刚刚
研友_LJeoa8完成签到,获得积分10
1秒前
1秒前
wanci应助典雅的静采纳,获得10
1秒前
1秒前
2秒前
灰灰12138完成签到,获得积分10
2秒前
王香香发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
思源应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
somin应助科研通管家采纳,获得10
2秒前
hailey完成签到 ,获得积分10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
刘三岁三岁完成签到,获得积分10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
V_I_G发布了新的文献求助10
3秒前
xzyin应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
xzn1123应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
xzn1123应助科研通管家采纳,获得10
3秒前
xzn1123应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
xzn1123应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
ttttt发布了新的文献求助10
3秒前
applelpypies完成签到 ,获得积分0
3秒前
打打应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
小蘑菇应助葛力采纳,获得10
4秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124