Recognition of IoT-based fire-detection system fire-signal patterns applying fuzzy logic

火灾探测 手动火警激活 火灾报警系统 警报 物联网 信号(编程语言) 计算机科学 模糊逻辑 可靠性(半导体) 实时计算 假警报 恒虚警率 可靠性工程 计算机安全 人工智能 工程类 建筑工程 电气工程 程序设计语言 功率(物理) 物理 量子力学
作者
Seung-Hwan Park,Doo Hyun Kim,Sung Chul Kim
出处
期刊:Heliyon [Elsevier]
卷期号:9 (2): e12964-e12964 被引量:1
标识
DOI:10.1016/j.heliyon.2023.e12964
摘要

In Korea, the use of fire-detection systems applying IoT technology to existing analog fire-alarm systems has increased owing to the communication technology convergence, the world's best Internet network, and the proliferation of Internet of Things (IoT). Its use can be expected to increase worldwide in the future. For IoT-based fire-detection systems to exhibit the requisite reliability (based on a low false-alarm rate), research related to the analysis of detection signals should be actively promoted and conducted. However, there has been no research activity based on actual operational data, apart from the research that has been conducted in laboratory environments. The primary reason for this state of affairs has been that the installation and use of IoT-based fire-detection systems on a large scale has been rare, worldwide. Consequently, with respect to the fire-signal characteristics of IoT-based fire-detection systems, related data in this study were obtained by investigating actual fire accident cases, using fire alarm data that occurred over a period of 5 years. Based on the signal pattern analysis results using these field data, a fuzzy logic system for recognizing fire signal patterns was developed and verified. As a result, in the actual fire accidents examined, an "alarm" condition-corresponding to the high possibility of fire among the five fire alarms-was determined 30 s before the actual fire alarm. Moreover, it was also found that approximately 80% of non-fire alarms could be reduced in the actual fire alarms that occurred at Institute K during the 5-year period examined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
czz014完成签到,获得积分10
刚刚
无无完成签到,获得积分10
刚刚
刚刚
Akim应助开心听露采纳,获得10
1秒前
Eason完成签到,获得积分10
1秒前
万能图书馆应助晴小晴采纳,获得10
2秒前
nightmoonsun发布了新的文献求助10
2秒前
2秒前
辣条治便秘完成签到,获得积分10
2秒前
敦敦发布了新的文献求助10
2秒前
2秒前
dong发布了新的文献求助10
2秒前
大气傲易完成签到 ,获得积分10
3秒前
ning发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
点心完成签到,获得积分10
3秒前
科研通AI2S应助芋圆采纳,获得10
4秒前
刘豆豆关注了科研通微信公众号
4秒前
4秒前
hhhh发布了新的文献求助10
5秒前
感谢自由又夏转发科研通微信,获得积分50
5秒前
5秒前
5秒前
Grace发布了新的文献求助10
6秒前
6秒前
陈文文发布了新的文献求助10
7秒前
Loy's完成签到,获得积分10
7秒前
wanci应助咎牛青采纳,获得10
8秒前
wml发布了新的文献求助10
8秒前
8秒前
Dr.wang完成签到,获得积分10
8秒前
开心听露完成签到,获得积分10
9秒前
ning完成签到,获得积分10
9秒前
学不动发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
DK宁发布了新的文献求助30
11秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3249734
求助须知:如何正确求助?哪些是违规求助? 2892974
关于积分的说明 8274850
捐赠科研通 2561214
什么是DOI,文献DOI怎么找? 1389734
科研通“疑难数据库(出版商)”最低求助积分说明 651303
邀请新用户注册赠送积分活动 628031