摘要
An elevated level of galectin-3, a carbohydrate-binding lectin implicated in tumorigenesis, metastasis, and epithelial-mesenchymal transition (EMT), has been found in cigarette smokers. However, the regulation of its expression and role in the pathogenesis of CS-induced EMT and lung cancer metastasis is unclear. Here, we have investigated the mechanism of CS-induced and galectin-3-mediated EMT in airway epithelial cells (AECs).A549 adenocarcinoma cells and primary small airway epithelial cells cultured on an air-liquid interface (ALI) were exposed to cigarette smoke extract (CSE), and MTT, trypan blue, migration, invasion, tumor spheroid and colony formation assays were performed to assess EMT phenotype. Immunoblotting was performed to assess EMT and stemness markers and other regulatory proteins.CSE exposure affected cell survival and morphology, migration, invasion, and clonogenicity of AECs, which were concomitant with an increase in the expression of EMT markers, galectin-3, and runt-related transcription factor-2 (RUNX-2), an osteogenic transcription factor and upstream regulator of galectin-3. Chemical inhibition or silencing of RUNX-2 downregulated galectin-3 and modulated EMT marker expression, migration, invasion, and clonogenicity in CSE-exposed AECs. Recombinant human galectin-3 also induced EMT and stemness-associated changes in the AECs, and GB1107, a galectin-3 inhibitor, ameliorated these changes. Further, CSE-induced intracellular ROS enabled an increase in RUNX-2 and galectin-3 expression, which were reversed by n-acetyl-cysteine.These results provide a novel mechanistic insight into CSE-induced EMT via RUNX-2/galectin-3 axis mediated through ROS, which promoted EMT-associated changes, including invasion, migration, and stemness in AECs, which could be implicated in CS-induced lung cancer progression.