HyGGE: Hyperbolic graph attention network for reasoning over knowledge graphs

嵌入 双曲空间 理论计算机科学 计算机科学 双曲流形 关系(数据库) 数学 图形 欧几里德几何 纯数学 人工智能 双曲函数 数据挖掘 几何学
作者
Yuzhuo Wang,Hongzhi Wang,Wenbo Lu,Yanguang Yu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:630: 190-205 被引量:15
标识
DOI:10.1016/j.ins.2023.02.050
摘要

Recently, hyperbolic embedding has successfully demonstrated its superiority over Euclidean analogues in representing hierarchical data. As the scale-free network that usually exhibits rich hierarchical structures, knowledge graphs naturally become a field where hyperbolic embedding shows its talents. Furthermore, hyperbolic embedding is also an expected solution to comprehensively reproduce the semantic features and underlying structures of KGs in the embedding space, which will significantly optimize the interpretability and performance of embedding models. However, most of the several existing hyperbolic studies only individually learn semantic information indicated by triples individually, making the embedding space relatively one-sided and simplified. In addition, many issues that limit reasoning performance are still ignored and unresolved in the context of hyperbolic geometry, like the response to complex relations and relation patterns. Motivated by these concerns, we propose the hyperbolic embedding model for KG reasoning, HyGGE. It is based on an innovative hyperbolic graph attention network. Furthermore, the response to complex relations, which is a well-known problem that constrains reasoning performance is also discussed in HyGGE. On the one hand, the focus on neighborhood structures and relation features makes up for the singularity that the embedding space is completely induced by triples individually, thereby optimizing the expressiveness of the embedding space. On the other hand, they cooperate with the effect of hyperbolic geometry to capture hierarchical features contained in local structures, and thus giving the hyperbolic embedding a fuller play to its advantages. Extensive experiments have validated the effectiveness and advantages of HyGGE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
天马发布了新的文献求助10
1秒前
2秒前
2秒前
李健应助月明采纳,获得10
3秒前
3秒前
垃圾智造者完成签到,获得积分10
3秒前
可爱的函函应助yangqi采纳,获得200
3秒前
科研通AI5应助Musicman采纳,获得10
3秒前
3秒前
tteng完成签到,获得积分20
3秒前
tang发布了新的文献求助10
4秒前
我是老大应助过冷风采纳,获得10
5秒前
5秒前
5秒前
SciGPT应助凯撒采纳,获得10
6秒前
Akim应助vtfangfangfang采纳,获得10
7秒前
zzzzz完成签到,获得积分20
7秒前
able完成签到 ,获得积分20
7秒前
必过六级发布了新的文献求助10
8秒前
8秒前
Hedy发布了新的文献求助10
8秒前
8秒前
Dream发布了新的文献求助20
9秒前
lym97发布了新的文献求助10
9秒前
今后应助Aurora采纳,获得10
9秒前
量子星尘发布了新的文献求助150
10秒前
11秒前
科研通AI2S应助森森采纳,获得10
11秒前
11秒前
LZJ发布了新的文献求助10
11秒前
敏感草丛发布了新的文献求助10
11秒前
RORY发布了新的文献求助30
12秒前
上官若男应助嘻嘻采纳,获得10
12秒前
13秒前
ww417发布了新的文献求助10
13秒前
一路繁花发布了新的文献求助10
14秒前
赘婿应助哈哈哈哈采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5157717
求助须知:如何正确求助?哪些是违规求助? 4352814
关于积分的说明 13552905
捐赠科研通 4196185
什么是DOI,文献DOI怎么找? 2301527
邀请新用户注册赠送积分活动 1301277
关于科研通互助平台的介绍 1246423