HyGGE: Hyperbolic graph attention network for reasoning over knowledge graphs

嵌入 双曲空间 理论计算机科学 计算机科学 双曲流形 关系(数据库) 数学 图形 欧几里德几何 纯数学 人工智能 双曲函数 数据挖掘 几何学
作者
Yuzhuo Wang,Hongzhi Wang,Wenbo Lu,Yanguang Yu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:630: 190-205 被引量:15
标识
DOI:10.1016/j.ins.2023.02.050
摘要

Recently, hyperbolic embedding has successfully demonstrated its superiority over Euclidean analogues in representing hierarchical data. As the scale-free network that usually exhibits rich hierarchical structures, knowledge graphs naturally become a field where hyperbolic embedding shows its talents. Furthermore, hyperbolic embedding is also an expected solution to comprehensively reproduce the semantic features and underlying structures of KGs in the embedding space, which will significantly optimize the interpretability and performance of embedding models. However, most of the several existing hyperbolic studies only individually learn semantic information indicated by triples individually, making the embedding space relatively one-sided and simplified. In addition, many issues that limit reasoning performance are still ignored and unresolved in the context of hyperbolic geometry, like the response to complex relations and relation patterns. Motivated by these concerns, we propose the hyperbolic embedding model for KG reasoning, HyGGE. It is based on an innovative hyperbolic graph attention network. Furthermore, the response to complex relations, which is a well-known problem that constrains reasoning performance is also discussed in HyGGE. On the one hand, the focus on neighborhood structures and relation features makes up for the singularity that the embedding space is completely induced by triples individually, thereby optimizing the expressiveness of the embedding space. On the other hand, they cooperate with the effect of hyperbolic geometry to capture hierarchical features contained in local structures, and thus giving the hyperbolic embedding a fuller play to its advantages. Extensive experiments have validated the effectiveness and advantages of HyGGE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助天真的青烟采纳,获得10
刚刚
怡然的一斩完成签到,获得积分20
1秒前
我是老大应助nnn采纳,获得10
1秒前
1秒前
叶枫寒发布了新的文献求助10
2秒前
时间胶囊发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
xy发布了新的文献求助10
4秒前
好好学习吧就完成签到,获得积分10
4秒前
zgjc发布了新的文献求助10
4秒前
momomiao完成签到,获得积分10
5秒前
6秒前
科研小白发布了新的文献求助20
6秒前
6秒前
优美巨人发布了新的文献求助10
6秒前
星辰大海应助晶晶采纳,获得10
7秒前
RED发布了新的文献求助10
7秒前
8秒前
8秒前
Island D完成签到,获得积分10
8秒前
ls完成签到,获得积分10
8秒前
火山发布了新的文献求助10
9秒前
9秒前
俊逸书琴发布了新的文献求助10
9秒前
陶醉的啤酒完成签到 ,获得积分20
9秒前
biozy发布了新的文献求助10
10秒前
10秒前
cm发布了新的文献求助30
11秒前
11秒前
11秒前
田様应助易生采纳,获得10
12秒前
完美世界应助sssyq采纳,获得10
12秒前
余菲关注了科研通微信公众号
12秒前
领导范儿应助sun采纳,获得10
12秒前
Lucas应助火山采纳,获得10
12秒前
low发布了新的文献求助10
13秒前
jiabaoyu发布了新的文献求助10
13秒前
NovermberRain发布了新的文献求助50
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4990263
求助须知:如何正确求助?哪些是违规求助? 4239297
关于积分的说明 13206302
捐赠科研通 4033719
什么是DOI,文献DOI怎么找? 2206917
邀请新用户注册赠送积分活动 1218024
关于科研通互助平台的介绍 1136218