HyGGE: Hyperbolic graph attention network for reasoning over knowledge graphs

嵌入 双曲空间 理论计算机科学 计算机科学 双曲流形 关系(数据库) 数学 图形 欧几里德几何 纯数学 人工智能 双曲函数 数据挖掘 几何学
作者
Yuzhuo Wang,Hongzhi Wang,Wenbo Lu,Yanguang Yu
出处
期刊:Information Sciences [Elsevier]
卷期号:630: 190-205 被引量:15
标识
DOI:10.1016/j.ins.2023.02.050
摘要

Recently, hyperbolic embedding has successfully demonstrated its superiority over Euclidean analogues in representing hierarchical data. As the scale-free network that usually exhibits rich hierarchical structures, knowledge graphs naturally become a field where hyperbolic embedding shows its talents. Furthermore, hyperbolic embedding is also an expected solution to comprehensively reproduce the semantic features and underlying structures of KGs in the embedding space, which will significantly optimize the interpretability and performance of embedding models. However, most of the several existing hyperbolic studies only individually learn semantic information indicated by triples individually, making the embedding space relatively one-sided and simplified. In addition, many issues that limit reasoning performance are still ignored and unresolved in the context of hyperbolic geometry, like the response to complex relations and relation patterns. Motivated by these concerns, we propose the hyperbolic embedding model for KG reasoning, HyGGE. It is based on an innovative hyperbolic graph attention network. Furthermore, the response to complex relations, which is a well-known problem that constrains reasoning performance is also discussed in HyGGE. On the one hand, the focus on neighborhood structures and relation features makes up for the singularity that the embedding space is completely induced by triples individually, thereby optimizing the expressiveness of the embedding space. On the other hand, they cooperate with the effect of hyperbolic geometry to capture hierarchical features contained in local structures, and thus giving the hyperbolic embedding a fuller play to its advantages. Extensive experiments have validated the effectiveness and advantages of HyGGE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
huo应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
万能图书馆应助halophiles采纳,获得10
1秒前
1秒前
Allen发布了新的文献求助10
2秒前
欢呼鼠标发布了新的文献求助30
3秒前
3秒前
3秒前
GQ完成签到,获得积分10
4秒前
苏培培发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
7秒前
7秒前
传奇3应助LC采纳,获得10
8秒前
9秒前
研友_LwlAgn发布了新的文献求助10
9秒前
LI1完成签到,获得积分10
10秒前
小新发布了新的文献求助10
10秒前
香妃完成签到,获得积分10
11秒前
11秒前
陈一口发布了新的文献求助10
12秒前
LIUYI发布了新的文献求助10
12秒前
甜馨完成签到,获得积分10
13秒前
13秒前
岛L发布了新的文献求助10
13秒前
爆米花应助研友_LwlAgn采纳,获得10
14秒前
14秒前
14秒前
14秒前
LI1发布了新的文献求助30
15秒前
情怀应助自觉秋采纳,获得30
18秒前
Ava应助曾经阁采纳,获得10
18秒前
fang发布了新的文献求助10
18秒前
大模型应助小新采纳,获得10
18秒前
chenchenchen发布了新的文献求助10
19秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313419
求助须知:如何正确求助?哪些是违规求助? 2945813
关于积分的说明 8527122
捐赠科研通 2621489
什么是DOI,文献DOI怎么找? 1433679
科研通“疑难数据库(出版商)”最低求助积分说明 665080
邀请新用户注册赠送积分活动 650600