HyGGE: Hyperbolic graph attention network for reasoning over knowledge graphs

嵌入 双曲空间 理论计算机科学 计算机科学 双曲流形 关系(数据库) 数学 图形 欧几里德几何 纯数学 人工智能 双曲函数 数据挖掘 几何学
作者
Yuzhuo Wang,Hongzhi Wang,Wenbo Lu,Yanguang Yu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:630: 190-205 被引量:15
标识
DOI:10.1016/j.ins.2023.02.050
摘要

Recently, hyperbolic embedding has successfully demonstrated its superiority over Euclidean analogues in representing hierarchical data. As the scale-free network that usually exhibits rich hierarchical structures, knowledge graphs naturally become a field where hyperbolic embedding shows its talents. Furthermore, hyperbolic embedding is also an expected solution to comprehensively reproduce the semantic features and underlying structures of KGs in the embedding space, which will significantly optimize the interpretability and performance of embedding models. However, most of the several existing hyperbolic studies only individually learn semantic information indicated by triples individually, making the embedding space relatively one-sided and simplified. In addition, many issues that limit reasoning performance are still ignored and unresolved in the context of hyperbolic geometry, like the response to complex relations and relation patterns. Motivated by these concerns, we propose the hyperbolic embedding model for KG reasoning, HyGGE. It is based on an innovative hyperbolic graph attention network. Furthermore, the response to complex relations, which is a well-known problem that constrains reasoning performance is also discussed in HyGGE. On the one hand, the focus on neighborhood structures and relation features makes up for the singularity that the embedding space is completely induced by triples individually, thereby optimizing the expressiveness of the embedding space. On the other hand, they cooperate with the effect of hyperbolic geometry to capture hierarchical features contained in local structures, and thus giving the hyperbolic embedding a fuller play to its advantages. Extensive experiments have validated the effectiveness and advantages of HyGGE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TNT应助啾啾采纳,获得10
刚刚
炙热的天菱完成签到,获得积分10
1秒前
小渔呦呦完成签到,获得积分10
2秒前
wanci完成签到,获得积分0
2秒前
小王时发布了新的文献求助10
3秒前
科研通AI2S应助再睡亿分钟采纳,获得10
4秒前
Polaris完成签到,获得积分10
4秒前
大蜥蜴完成签到,获得积分10
5秒前
5秒前
噗噗完成签到 ,获得积分10
6秒前
牛经理完成签到,获得积分10
6秒前
吕四亮完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
田様应助孤岛采纳,获得10
7秒前
9秒前
小毕可乐完成签到,获得积分10
9秒前
10秒前
10秒前
敦敦完成签到,获得积分20
10秒前
打打应助Phantom1234采纳,获得10
11秒前
eueurhj发布了新的文献求助10
12秒前
liiy完成签到,获得积分10
12秒前
13秒前
我是老大应助zobrzg采纳,获得10
13秒前
sddd发布了新的文献求助20
14秒前
无敌小邓历险记完成签到,获得积分10
15秒前
15秒前
15秒前
urochen完成签到 ,获得积分10
15秒前
15秒前
子叶完成签到,获得积分10
15秒前
科研通AI5应助S8采纳,获得10
16秒前
自信的德天完成签到,获得积分10
16秒前
animenz完成签到,获得积分10
17秒前
于佳卉发布了新的文献求助20
17秒前
科研通AI5应助helena333采纳,获得10
18秒前
黄林豪关注了科研通微信公众号
18秒前
俭朴的皮卡丘完成签到 ,获得积分10
18秒前
橙以澄发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096