光热治疗
药物输送
生物相容性
体内
化学
癌症治疗
肿瘤微环境
自愈水凝胶
壳聚糖
纳米技术
磁性纳米粒子
纳米颗粒
癌症研究
材料科学
癌症
肿瘤细胞
医学
生物化学
有机化学
生物技术
内科学
生物
作者
Hai Ma,Guanghao Yu,Jinlai Cheng,Lixia Song,Ziyu Zhou,Yu Zhao,Qinghe Zhao,Li Liu,Xiaolu Wei,Miyi Yang
出处
期刊:Biomacromolecules
[American Chemical Society]
日期:2023-01-24
卷期号:24 (2): 868-885
被引量:8
标识
DOI:10.1021/acs.biomac.2c01300
摘要
Conventional tumor chemotherapy is limited by its low therapeutic efficacy and side effects, which severely hold back its further application. Drug delivery systems (DDSs) based on nanomaterials have attracted wide interest in cancer treatment; especially, the system can realize efficient synergistic therapies. Here, we designed a smart hydrogel drug delivery system with multiple responses to enhance the tumor treatment effect. By cross-linking oxidized hydroxypropyl cellulose with carboxymethyl chitosan, an injectable hydrogel was obtained, into which artesunate (ART), ferroferric oxide (Fe3O4) nanoparticles, and black phosphorus nanosheets (BPs) were preloaded. This DDS has multiple functions including magnetic targeting, pH sensitivity, chemodynamic therapy, and photothermal response. This nanoparticle-composited hydrogel not only preserved excellent rheological properties but also allowed for an accurate stable drug release at tumor sites and synergistic effects of multiple therapies. The in vitro and in vivo experiments revealed that this DDS could efficiently eliminate the HepG2 tumor with good biocompatibility. Taken together, this study clarifies the possible antitumor mechanism of this ART-loaded nanoparticle-composited hydrogel and provides a new strategy for synergistic photothermal–chemo–chemodynamic therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI