Engineering the Substrate Specificity of Toluene Degrading Enzyme XylM Using Biosensor XylS and Machine Learning

恶臭假单胞菌 基质(水族馆) 化学 生物化学 苯甲酸 生物传感器 组合化学 色谱法 生物 生态学
作者
Yuki Ogawa,Yutaka Saitô,Hideki Yamaguchi,Yohei Katsuyama,Yasuo Ohnishi
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:12 (2): 572-582 被引量:8
标识
DOI:10.1021/acssynbio.2c00577
摘要

Enzyme engineering using machine learning has been developed in recent years. However, to obtain a large amount of data on enzyme activities for training data, it is necessary to develop a high-throughput and accurate method for evaluating enzyme activities. Here, we examined whether a biosensor-based enzyme engineering method can be applied to machine learning. As a model experiment, we aimed to modify the substrate specificity of XylM, a rate-determining enzyme in a multistep oxidation reaction catalyzed by XylMABC in Pseudomonas putida. XylMABC naturally converts toluene and xylene to benzoic acid and toluic acid, respectively. We aimed to engineer XylM to improve its conversion efficiency to a non-native substrate, 2,6-xylenol. Wild-type XylMABC slightly converted 2,6-xylenol to 3-methylsalicylic acid, which is the ligand of the transcriptional regulator XylS in P. putida. By locating a fluorescent protein gene under the control of the Pm promoter to which XylS binds, a XylS-producing Escherichia coli strain showed higher fluorescence intensity in a 3-methylsalicylic acid concentration-dependent manner. We evaluated the 3-methylsalicylic acid productivity of XylM variants using the fluorescence intensity of the sensor strain as an indicator. The obtained data provided the training data for machine learning for the directed evolution of XylM. Two cycles of machine learning-assisted directed evolution resulted in the acquisition of XylM-D140E-V144K-F243L-N244S with 15 times higher productivity than wild-type XylM. These results demonstrate that an indirect enzyme activity evaluation method using biosensors is sufficiently quantitative and high-throughput to be used as training data for machine learning. The findings expand the versatility of machine learning in enzyme engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助wjh采纳,获得10
刚刚
1秒前
昧冒冰完成签到,获得积分20
2秒前
3秒前
吉良吉影发布了新的文献求助10
3秒前
4秒前
4秒前
李伟完成签到,获得积分20
5秒前
艾斯比发布了新的文献求助10
5秒前
大肥狗完成签到,获得积分10
5秒前
大模型应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
7秒前
顾矜应助科研通管家采纳,获得30
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
TZ发布了新的文献求助10
8秒前
8秒前
慕青应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
迷路傲柏发布了新的文献求助10
9秒前
我是老大应助shirley采纳,获得10
10秒前
10秒前
11秒前
Bai完成签到,获得积分10
11秒前
在水一方应助joe采纳,获得30
14秒前
sentimental发布了新的文献求助10
16秒前
111111发布了新的文献求助10
18秒前
阳光芷蝶完成签到,获得积分10
18秒前
18秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384449
求助须知:如何正确求助?哪些是违规求助? 4507293
关于积分的说明 14027514
捐赠科研通 4416938
什么是DOI,文献DOI怎么找? 2426174
邀请新用户注册赠送积分活动 1418976
关于科研通互助平台的介绍 1397295