Engineering the Substrate Specificity of Toluene Degrading Enzyme XylM Using Biosensor XylS and Machine Learning

恶臭假单胞菌 基质(水族馆) 化学 生物化学 苯甲酸 生物传感器 组合化学 色谱法 生物 生态学
作者
Yuki Ogawa,Yutaka Saitô,Hideki Yamaguchi,Yohei Katsuyama,Yasuo Ohnishi
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:12 (2): 572-582 被引量:8
标识
DOI:10.1021/acssynbio.2c00577
摘要

Enzyme engineering using machine learning has been developed in recent years. However, to obtain a large amount of data on enzyme activities for training data, it is necessary to develop a high-throughput and accurate method for evaluating enzyme activities. Here, we examined whether a biosensor-based enzyme engineering method can be applied to machine learning. As a model experiment, we aimed to modify the substrate specificity of XylM, a rate-determining enzyme in a multistep oxidation reaction catalyzed by XylMABC in Pseudomonas putida. XylMABC naturally converts toluene and xylene to benzoic acid and toluic acid, respectively. We aimed to engineer XylM to improve its conversion efficiency to a non-native substrate, 2,6-xylenol. Wild-type XylMABC slightly converted 2,6-xylenol to 3-methylsalicylic acid, which is the ligand of the transcriptional regulator XylS in P. putida. By locating a fluorescent protein gene under the control of the Pm promoter to which XylS binds, a XylS-producing Escherichia coli strain showed higher fluorescence intensity in a 3-methylsalicylic acid concentration-dependent manner. We evaluated the 3-methylsalicylic acid productivity of XylM variants using the fluorescence intensity of the sensor strain as an indicator. The obtained data provided the training data for machine learning for the directed evolution of XylM. Two cycles of machine learning-assisted directed evolution resulted in the acquisition of XylM-D140E-V144K-F243L-N244S with 15 times higher productivity than wild-type XylM. These results demonstrate that an indirect enzyme activity evaluation method using biosensors is sufficiently quantitative and high-throughput to be used as training data for machine learning. The findings expand the versatility of machine learning in enzyme engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助周周采纳,获得10
刚刚
Edward发布了新的文献求助10
1秒前
1秒前
adeno发布了新的文献求助10
2秒前
何罐吾言完成签到,获得积分10
2秒前
执着的凌香完成签到,获得积分10
3秒前
陈乔乔完成签到 ,获得积分10
3秒前
4秒前
4秒前
hippo发布了新的文献求助10
4秒前
5秒前
7秒前
8秒前
韩医生完成签到,获得积分10
8秒前
共享精神应助YOP采纳,获得10
8秒前
思源应助整齐枫叶采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
xiaozheng完成签到,获得积分10
10秒前
可爱的函函应助zzy采纳,获得10
10秒前
小小发布了新的文献求助10
11秒前
11秒前
虚拟的飞双完成签到 ,获得积分10
11秒前
wanci应助xu1227采纳,获得10
12秒前
MMZ发布了新的文献求助10
12秒前
慕青应助xu1227采纳,获得10
12秒前
ZiyuanLi完成签到 ,获得积分10
12秒前
13秒前
可爱的天曼完成签到,获得积分10
14秒前
脑洞疼应助OKYT采纳,获得10
14秒前
池海秀发布了新的文献求助10
16秒前
星灵发布了新的文献求助10
19秒前
19秒前
隐形曼青应助Edward采纳,获得10
19秒前
20秒前
22秒前
AYESHA发布了新的文献求助10
22秒前
斯文败类应助小鲤鱼本鱼采纳,获得10
22秒前
zzy完成签到,获得积分10
23秒前
小坤同学发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4980088
求助须知:如何正确求助?哪些是违规求助? 4232586
关于积分的说明 13184139
捐赠科研通 4023857
什么是DOI,文献DOI怎么找? 2201488
邀请新用户注册赠送积分活动 1213925
关于科研通互助平台的介绍 1130293