Engineering the Substrate Specificity of Toluene Degrading Enzyme XylM Using Biosensor XylS and Machine Learning

恶臭假单胞菌 基质(水族馆) 化学 生物化学 苯甲酸 生物传感器 组合化学 色谱法 生物 生态学
作者
Yuki Ogawa,Yutaka Saitô,Hideki Yamaguchi,Yohei Katsuyama,Yasuo Ohnishi
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:12 (2): 572-582 被引量:8
标识
DOI:10.1021/acssynbio.2c00577
摘要

Enzyme engineering using machine learning has been developed in recent years. However, to obtain a large amount of data on enzyme activities for training data, it is necessary to develop a high-throughput and accurate method for evaluating enzyme activities. Here, we examined whether a biosensor-based enzyme engineering method can be applied to machine learning. As a model experiment, we aimed to modify the substrate specificity of XylM, a rate-determining enzyme in a multistep oxidation reaction catalyzed by XylMABC in Pseudomonas putida. XylMABC naturally converts toluene and xylene to benzoic acid and toluic acid, respectively. We aimed to engineer XylM to improve its conversion efficiency to a non-native substrate, 2,6-xylenol. Wild-type XylMABC slightly converted 2,6-xylenol to 3-methylsalicylic acid, which is the ligand of the transcriptional regulator XylS in P. putida. By locating a fluorescent protein gene under the control of the Pm promoter to which XylS binds, a XylS-producing Escherichia coli strain showed higher fluorescence intensity in a 3-methylsalicylic acid concentration-dependent manner. We evaluated the 3-methylsalicylic acid productivity of XylM variants using the fluorescence intensity of the sensor strain as an indicator. The obtained data provided the training data for machine learning for the directed evolution of XylM. Two cycles of machine learning-assisted directed evolution resulted in the acquisition of XylM-D140E-V144K-F243L-N244S with 15 times higher productivity than wild-type XylM. These results demonstrate that an indirect enzyme activity evaluation method using biosensors is sufficiently quantitative and high-throughput to be used as training data for machine learning. The findings expand the versatility of machine learning in enzyme engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
旺仔Mario发布了新的文献求助10
刚刚
1秒前
顾矜应助搞怪绿柳采纳,获得10
2秒前
2秒前
3秒前
自觉画笔完成签到 ,获得积分10
4秒前
4秒前
xi发布了新的文献求助10
4秒前
可爱的函函应助一片叶子采纳,获得10
5秒前
5秒前
王辰宁发布了新的文献求助10
6秒前
大翟发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
9秒前
无私的芹发布了新的文献求助10
9秒前
无私的芹发布了新的文献求助10
9秒前
无私的芹发布了新的文献求助10
9秒前
10秒前
无私的芹发布了新的文献求助10
10秒前
权志龙发布了新的文献求助10
10秒前
无私的芹发布了新的文献求助10
10秒前
我是老大应助Meow采纳,获得10
11秒前
无私的芹发布了新的文献求助10
11秒前
栗园完成签到 ,获得积分10
11秒前
华仔应助学fei了吗采纳,获得10
11秒前
卡布奇诺完成签到,获得积分10
12秒前
无私的芹发布了新的文献求助10
14秒前
无私的芹发布了新的文献求助10
14秒前
无私的芹发布了新的文献求助10
14秒前
15秒前
15秒前
汌舟完成签到,获得积分10
17秒前
自觉寄文完成签到,获得积分10
18秒前
搞怪绿柳发布了新的文献求助10
19秒前
酷酷小子发布了新的文献求助10
19秒前
HAG发布了新的文献求助10
20秒前
划分完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533801
关于积分的说明 11263775
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806113
邀请新用户注册赠送积分活动 882955
科研通“疑难数据库(出版商)”最低求助积分说明 809629