Li+-clipping for edge S-vacancy MoS2 quantum dots as an efficient bifunctional electrocatalyst enabling discharge growth of amorphous Li2O2 film

材料科学 电催化剂 空位缺陷 双功能 量子点 无定形固体 纳米技术 二硫化钼 析氧 电极 催化作用 物理化学 化学 结晶学 电化学 冶金 生物化学
作者
Zemin Sun,Jinlu He,Mengwei Yuan,Liu Lin,Zheng Zhang,Zhuo Kang,Qingliang Liao,Huifeng Li,Genban Sun,Xiaojing Yang,Run Long,Yue Zhang
出处
期刊:Nano Energy [Elsevier]
卷期号:65: 103996-103996 被引量:68
标识
DOI:10.1016/j.nanoen.2019.103996
摘要

Molybdenum disulfide (MoS2), as an extremely intriguing two-dimensional (2D) material with excellent electrocatalyst, has attracted more and more attentions in recent years. However, the lack of precisely engineered rich-edge S-vacancy MoS2 constitutes a major obstacle for in-depth studying of structure-activity relationship of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, based on Lewis acid-base theory, we prepared rich-edge S-vacancy MoS2 quantum dots (MoS2 QDs) via top-down strategy using lithium bis(trifluoromethylsulphonyl)imide as a stripper and clipper. It is demonstrated for the first time that the rich-edge S-vacancy MoS2 QDs exhibit an extraordinary ORR/OER catalytic performance in Li-O2 batteries system by a joint experimental and theoretical study. Importantly, the rich-edge S-vacancy MoS2 QDs can run more than 230 cycles at high current density, which was almost 9 times longer than the cycle stability of bulk MoS2. The excellent activity arises primarily due to that the MoS2 QDs facilitate conformal growth of amorphous Li2O2 film on the cathode, originating from the significant differences of adsorption energies between Li+ and O2, which could significantly enhanced Li2O2 formation/decomposition kinetics. This work provides a novel way for controllable synthesis of rich-edge S-vacancy MoS2 QDs, establishes the underlying mechanisms for the high OER/ORR activity, and suggests high translatability to apply other TMDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YULIA完成签到,获得积分10
1秒前
1秒前
yz完成签到,获得积分10
1秒前
美女完成签到,获得积分10
1秒前
1秒前
Moihan完成签到,获得积分10
1秒前
音乐完成签到,获得积分10
1秒前
2秒前
忧郁绿兰完成签到,获得积分10
2秒前
huangyi发布了新的文献求助10
3秒前
3秒前
邓佳鑫Alan应助uniphoton采纳,获得10
3秒前
打打应助哭泣的金鱼采纳,获得10
3秒前
起风了发布了新的文献求助10
4秒前
灬乔完成签到 ,获得积分10
4秒前
yxy发布了新的文献求助10
4秒前
与光同晨发布了新的文献求助10
4秒前
5秒前
陶醉薯片完成签到,获得积分20
5秒前
smartbot完成签到,获得积分10
6秒前
请叫我风吹麦浪应助mi采纳,获得10
6秒前
6秒前
YHL发布了新的文献求助10
6秒前
su完成签到,获得积分10
6秒前
6秒前
自信富完成签到,获得积分10
7秒前
乖乖完成签到 ,获得积分10
7秒前
7秒前
liudiqiu应助Ll采纳,获得10
7秒前
灬乔关注了科研通微信公众号
8秒前
张菁完成签到,获得积分10
8秒前
菠萝吹雪应助xiachengcs采纳,获得30
9秒前
洋洋发布了新的文献求助10
9秒前
9秒前
10秒前
威武爆米花完成签到,获得积分10
11秒前
在水一方应助zhaowenxian采纳,获得10
12秒前
SS给SS的求助进行了留言
12秒前
13秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762