已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Computational Creativity via Assisted Variational Synthesis of Mechanisms Using Deep Generative Models

计算机科学 运动学 人工智能 深度学习 人工神经网络 生成模型 计算复杂性理论 算法 理论计算机科学 生成语法 经典力学 物理
作者
Shrinath Deshpande,Anurag Purwar
标识
DOI:10.1115/detc2019-98193
摘要

Abstract Computational methods for kinematic synthesis of mechanisms for motion generation problems require input in the form of precision positions. Given the highly non-linear nature of the problem, solutions to these methods are overly sensitive to the input — a small perturbation to even a single position of a given motion can change the topology and dimensions of the synthesized mechanisms drastically. Thus, the synthesis becomes a blind iterative process of maneuvering precision positions in the hope of finding good solutions. In this paper, we present a deep-learning based framework which manages the uncertain user input and provides the user with a higher level control of the design process. The framework also imputes the input with missing information required by the computational algorithms. The approach starts by learning the probability distribution of possible linkage parameters with a deep generative modeling technique, called Variational Auto Encoder (VAE). This facilitates capturing salient features of the user input and relating them with possible linkage parameters. Then, input samples resembling the inferred salient features are generated and fed to the computational methods of kinematic synthesis. The framework post-processes the solutions and presents the concepts to the user along with a handle to visualize the variants of each concept. We define this approach as Variational Synthesis of Mechanisms. In addition, we also present an alternate End-to-End deep neural network architecture for Variational Synthesis of linkages. This End-to-End architecture is a Conditional-VAE (C-VAE), which approximates the conditional distribution of linkage parameters with respect to coupler trajectory distribution. The outcome is a probability distribution of kinematic linkages for an unknown coupler path or motion. This framework functions as a bridge between the current state of the art theoretical and computational kinematic methods and machine learning to enable designers to create practical mechanism design solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
3秒前
orixero应助沉默傲薇采纳,获得10
3秒前
传统的幻梦完成签到,获得积分10
4秒前
细心的如天完成签到 ,获得积分10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
8秒前
LYQ完成签到,获得积分10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
huazhangchina完成签到 ,获得积分10
9秒前
Lliu发布了新的文献求助10
9秒前
无限如霜完成签到 ,获得积分10
10秒前
早睡一哥完成签到,获得积分10
11秒前
tjnksy完成签到,获得积分10
11秒前
斑鸠完成签到,获得积分10
13秒前
华仔应助沐子采纳,获得10
14秒前
小小斌完成签到,获得积分10
19秒前
20秒前
科研花完成签到 ,获得积分10
21秒前
21秒前
22秒前
贪玩的野狼完成签到 ,获得积分10
23秒前
junkook完成签到 ,获得积分10
24秒前
木又完成签到 ,获得积分10
24秒前
单薄的金鱼完成签到,获得积分10
25秒前
25秒前
最最最发布了新的文献求助10
25秒前
壮观溪流完成签到 ,获得积分10
25秒前
CNS天天有发布了新的文献求助10
26秒前
26秒前
收集快乐发布了新的文献求助10
28秒前
阳佟听荷发布了新的文献求助10
30秒前
123完成签到 ,获得积分10
30秒前
多巴胺发布了新的文献求助10
32秒前
ninomae完成签到 ,获得积分10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516206
求助须知:如何正确求助?哪些是违规求助? 3098495
关于积分的说明 9239682
捐赠科研通 2793503
什么是DOI,文献DOI怎么找? 1533092
邀请新用户注册赠送积分活动 712561
科研通“疑难数据库(出版商)”最低求助积分说明 707359