囊性纤维化
医学
炎症
花生四烯酸
纤维化
花生四烯酸代谢
二手烟
新陈代谢
生理学
免疫学
病理
内科学
环境卫生
生物化学
酶
生物
作者
Benjamin T. Kopp,R A Thompson,Jeeho Kim,Robert Konstan,Alejandro Díaz,B. Smith,Chandra L. Shrestha,Lynette K. Rogers,Don Hayes,Dmitry Tumin,Frederick W. Woodley,Octavio Ramilo,Don B. Sanders,Judith A. Groner,Asunción Mejías
出处
期刊:Thorax
[BMJ]
日期:2019-01-19
卷期号:74 (3): 237-246
被引量:29
标识
DOI:10.1136/thoraxjnl-2018-211845
摘要
Background Mechanisms that facilitate early infection and inflammation in cystic fibrosis (CF) are unclear. We previously demonstrated that children with CF and parental-reported secondhand smoke exposure (SHSe) have increased susceptibility to bacterial infections. SHSe hinders arachidonic acid (AA) metabolites that mediate immune function in patients without CF, and may influence CF immune dysfunction. We aimed to define SHSe’s impact on inflammation mediators and infection in children with CF. Methods Seventy-seven children with CF <10 years of age ( 35 infants <1 year; 42 children 1–10 years) were enrolled and hair nicotine concentrations measured as an objective surrogate of SHSe. AA signalling by serum and macrophage lipidomics, inflammation using blood transcriptional profiles and in vitro macrophage responses to bacterial infection after SHSe were assessed. Results Hair nicotine concentrations were elevated in 63% of patients. Of the AA metabolites measured by plasma lipidomics, prostaglandin D 2 (PGD 2 ) concentrations were decreased in children with CF exposed to SHSe, and associated with more frequent hospitalisations (p=0.007) and worsened weight z scores (p=0.008). Children with CF exposed to SHSe demonstrated decreased expression of the prostaglandin genes PTGES3 and PTGR2 and overexpression of inflammatory pathways. These findings were confirmed using an in vitro model, where SHSe was associated with a dose-dependent decrease in PGD 2 and increased methicillin-resistant Staphylococcus aureus survival in human CF macrophages. Conclusions Infants and young children with CF and SHSe have altered AA metabolism and dysregulated inflammatory gene expression resulting in impaired bacterial clearance. Our findings identified potential therapeutic targets to halt early disease progression associated with SHSe in the young population with CF.
科研通智能强力驱动
Strongly Powered by AbleSci AI