SHARQnet – Sophisticated harmonic artifact reduction in quantitative susceptibility mapping using a deep convolutional neural network

定量磁化率图 计算机科学 卷积神经网络 反问题 人工智能 正规化(语言学) 模式识别(心理学) 核(代数) 深度学习 算法 磁共振成像 数学 医学 组合数学 放射科 数学分析
作者
Steffen Bollmann,Matilde Holm Kristensen,Morten Skaarup Larsen,Mathias Vassard Olsen,Mads Jozwiak Pedersen,Lasse Riis Østergaard,Kieran O’Brien,Christian Langkammer,Amir Fazlollahi,Markus Barth
出处
期刊:Zeitschrift Fur Medizinische Physik [Elsevier]
卷期号:29 (2): 139-149 被引量:28
标识
DOI:10.1016/j.zemedi.2019.01.001
摘要

Quantitative susceptibility mapping (QSM) reveals pathological changes in widespread diseases such as Parkinson's disease, Multiple Sclerosis, or hepatic iron overload. QSM requires multiple processing steps after the acquisition of magnetic resonance imaging (MRI) phase measurements such as unwrapping, background field removal and the solution of an ill-posed field-to-source-inversion. Current techniques utilize iterative optimization procedures to solve the inversion and background field correction, which are computationally expensive and lead to suboptimal or over-regularized solutions requiring a careful choice of parameters that make a clinical application of QSM challenging. We have previously demonstrated that a deep convolutional neural network can invert the magnetic dipole kernel with a very efficient feed forward multiplication not requiring iterative optimization or the choice of regularization parameters. In this work, we extended this approach to remove background fields in QSM. The prototype method, called SHARQnet, was trained on simulated background fields and tested on 3 T and 7 T brain datasets. We show that SHARQnet outperforms current background field removal procedures and generalizes to a wide range of input data without requiring any parameter adjustments. In summary, we demonstrate that the solution of ill-posed problems in QSM can be achieved by learning the underlying physics causing the artifacts and removing them in an efficient and reliable manner and thereby will help to bring QSM towards clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
logic完成签到,获得积分10
1秒前
岁月轮回发布了新的文献求助10
1秒前
小离发布了新的文献求助10
1秒前
CodeCraft应助艺玲采纳,获得10
1秒前
chenjyuu完成签到,获得积分10
2秒前
韭黄发布了新的文献求助10
2秒前
2秒前
子车雁开完成签到,获得积分10
2秒前
3秒前
3秒前
故意的傲玉应助经法采纳,获得10
4秒前
上官若男应助经法采纳,获得10
4秒前
buno应助经法采纳,获得10
4秒前
1111应助经法采纳,获得10
4秒前
Lucas应助经法采纳,获得10
4秒前
Jasper应助经法采纳,获得10
4秒前
4秒前
习习应助经法采纳,获得10
4秒前
小鱼骑单车应助经法采纳,获得10
4秒前
辰柒发布了新的文献求助10
5秒前
英俊的铭应助经法采纳,获得10
5秒前
wgl发布了新的文献求助10
5秒前
领导范儿应助氨基酸采纳,获得30
5秒前
5秒前
科研通AI2S应助zink采纳,获得10
6秒前
科目三应助Jimmy采纳,获得10
6秒前
6秒前
6秒前
芋圆Z.发布了新的文献求助10
7秒前
7秒前
东皇太憨完成签到,获得积分10
7秒前
7秒前
8秒前
润润轩轩发布了新的文献求助10
8秒前
8秒前
orixero应助韭黄采纳,获得10
9秒前
gnufgg完成签到,获得积分10
9秒前
科研通AI5应助tabor采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759