Automatic Estimation of Fetal Abdominal Circumference from Ultrasound Images

超声波 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 霍夫变换 计算机视觉 放射科 图像(数学) 医学
作者
Jaeseong Jang,Yejin Park,Bukweon Kim,Sung Min Lee,Ja‐Young Kwon
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.1702.02741
摘要

Ultrasound diagnosis is routinely used in obstetrics and gynecology for fetal biometry, and owing to its time-consuming process, there has been a great demand for automatic estimation. However, the automated analysis of ultrasound images is complicated because they are patient-specific, operator-dependent, and machine-specific. Among various types of fetal biometry, the accurate estimation of abdominal circumference (AC) is especially difficult to perform automatically because the abdomen has low contrast against surroundings, non-uniform contrast, and irregular shape compared to other parameters.We propose a method for the automatic estimation of the fetal AC from 2D ultrasound data through a specially designed convolutional neural network (CNN), which takes account of doctors' decision process, anatomical structure, and the characteristics of the ultrasound image. The proposed method uses CNN to classify ultrasound images (stomach bubble, amniotic fluid, and umbilical vein) and Hough transformation for measuring AC. We test the proposed method using clinical ultrasound data acquired from 56 pregnant women. Experimental results show that, with relatively small training samples, the proposed CNN provides sufficient classification results for AC estimation through the Hough transformation. The proposed method automatically estimates AC from ultrasound images. The method is quantitatively evaluated, and shows stable performance in most cases and even for ultrasound images deteriorated by shadowing artifacts. As a result of experiments for our acceptance check, the accuracies are 0.809 and 0.771 with the expert 1 and expert 2, respectively, while the accuracy between the two experts is 0.905. However, for cases of oversized fetus, when the amniotic fluid is not observed or the abdominal area is distorted, it could not correctly estimate AC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
Estelle0928发布了新的文献求助10
2秒前
3秒前
YUU发布了新的文献求助10
4秒前
在水一方应助tly采纳,获得10
4秒前
牛牛发布了新的文献求助10
5秒前
LaTeXer应助wangjiangtao采纳,获得10
6秒前
6秒前
pluto应助西瓜二郎采纳,获得10
6秒前
strug783完成签到,获得积分10
7秒前
科研通AI2S应助22采纳,获得10
7秒前
dandan发布了新的文献求助10
8秒前
小波完成签到,获得积分10
8秒前
爆米花应助卢昱丹采纳,获得10
9秒前
喝杯水再走完成签到,获得积分10
9秒前
10秒前
海的呼唤完成签到,获得积分10
11秒前
12秒前
12秒前
张贵虎完成签到 ,获得积分10
12秒前
12秒前
12秒前
Jasper应助清修采纳,获得10
13秒前
CodeCraft应助美味的薯片采纳,获得10
13秒前
大模型应助AUK采纳,获得10
14秒前
14秒前
YUU完成签到,获得积分10
15秒前
852应助dandan采纳,获得10
15秒前
lumia发布了新的文献求助10
15秒前
16秒前
AVsecurity应助Stormi采纳,获得10
16秒前
红毛兔发布了新的文献求助10
17秒前
斯文紫菜完成签到,获得积分10
17秒前
17秒前
云澈完成签到,获得积分10
17秒前
99发布了新的文献求助10
18秒前
yuaasusanaann发布了新的文献求助80
18秒前
今后应助章鑫采纳,获得30
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014