Automatic Estimation of Fetal Abdominal Circumference from Ultrasound Images

超声波 卷积神经网络 人工智能 计算机科学 模式识别(心理学) 霍夫变换 计算机视觉 放射科 图像(数学) 医学
作者
Jaeseong Jang,Yejin Park,Bukweon Kim,Sung Min Lee,Ja‐Young Kwon
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.1702.02741
摘要

Ultrasound diagnosis is routinely used in obstetrics and gynecology for fetal biometry, and owing to its time-consuming process, there has been a great demand for automatic estimation. However, the automated analysis of ultrasound images is complicated because they are patient-specific, operator-dependent, and machine-specific. Among various types of fetal biometry, the accurate estimation of abdominal circumference (AC) is especially difficult to perform automatically because the abdomen has low contrast against surroundings, non-uniform contrast, and irregular shape compared to other parameters.We propose a method for the automatic estimation of the fetal AC from 2D ultrasound data through a specially designed convolutional neural network (CNN), which takes account of doctors' decision process, anatomical structure, and the characteristics of the ultrasound image. The proposed method uses CNN to classify ultrasound images (stomach bubble, amniotic fluid, and umbilical vein) and Hough transformation for measuring AC. We test the proposed method using clinical ultrasound data acquired from 56 pregnant women. Experimental results show that, with relatively small training samples, the proposed CNN provides sufficient classification results for AC estimation through the Hough transformation. The proposed method automatically estimates AC from ultrasound images. The method is quantitatively evaluated, and shows stable performance in most cases and even for ultrasound images deteriorated by shadowing artifacts. As a result of experiments for our acceptance check, the accuracies are 0.809 and 0.771 with the expert 1 and expert 2, respectively, while the accuracy between the two experts is 0.905. However, for cases of oversized fetus, when the amniotic fluid is not observed or the abdominal area is distorted, it could not correctly estimate AC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
Hello应助热情的人杰采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
zh发布了新的文献求助10
2秒前
3秒前
不配.应助上杉绘梨衣采纳,获得20
3秒前
3秒前
3秒前
bkagyin应助郝靖儿采纳,获得10
4秒前
Xuanran发布了新的文献求助10
6秒前
苏蛋蛋i发布了新的文献求助10
6秒前
CodeCraft应助dm11采纳,获得10
6秒前
7秒前
8秒前
8秒前
tomorrow505应助小白采纳,获得10
10秒前
12秒前
lqlqhehehe发布了新的文献求助10
15秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
17秒前
cctv18应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
cctv18应助科研通管家采纳,获得10
17秒前
17秒前
cctv18应助科研通管家采纳,获得10
17秒前
Tina完成签到 ,获得积分10
18秒前
lyn完成签到,获得积分10
19秒前
Xccccc完成签到 ,获得积分10
19秒前
21秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596