Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses

地质学 地体 弧前 古生物学 新生代 俯冲 大陆边缘 古地中海 岩石圈 构造学 纤维接头 被动保证金 中生代 构造盆地 裂谷 解剖 医学
作者
Paul Kapp,Peter G. DeCelles
出处
期刊:American Journal of Science [American Journal of Science]
卷期号:319 (3): 159-254 被引量:493
标识
DOI:10.2475/03.2019.01
摘要

The Himalayan-Tibetan orogen culminated during the Cenozoic India -- Asia collision, but its geological framework and initial growth were fundamentally the result of multiple, previous ocean closure and intercontinental suturing events. As such, the Himalayan-Tibetan orogen provides an ideal laboratory to investigate geological signatures of the suturing process in general, and how the Earth9s highest and largest orogenic feature formed in specific. This paper synthesizes the Triassic through Cenozoic geology of the central Himalayan-Tibetan orogen and presents our tectonic interpretations in a time series of schematic lithosphere-scale cross-sections and paleogeographic maps. We suggest that north-dipping subducting slabs beneath Asian continental terranes associated with closure of the Paleo-, Meso-, and Neo-Tethys oceans experienced phases of southward trench retreat prior to intercontinental suturing. These trench retreat events created ophiolites in forearc extensional settings and/or a backarc oceanic basins between rifted segments of upper-plate continental margin arcs. This process may have occurred at least three times along the southern Asian margin during northward subduction of Neo-Tethys oceanic lithosphere: from ∼174 to 156 Ma; 132 to 120 Ma; and 90 to 70 Ma. At most other times, the Tibetan terranes underwent Cordilleran-style or collisional contractional deformation. Geological records indicate that most of northern and central Tibet (the Hoh-Xil and Qiangtang terranes, respectively) were uplifted above sea level by Jurassic time, and southern Tibet (the Lhasa terrane) north of its forearc region has been above sea level since ∼100 Ma. Stratigraphic evidence indicates that the northern Himalayan margin of India collided with an Asian-affinity subduction complex -- forearc -- arc system beginning at ∼60 Ma. Both the Himalaya (composed of Indian crust) and Tibet show continuous geological records of orogenesis since ∼60 Ma. As no evidence exists in the rock record for a younger suture, the simplest interpretation of the geology is that India -- Asia collision initiated at ∼60 Ma. Plate circuit, paleomagnetic, and structural reconstructions, however, suggest that the southern margin of Asia was too far north of India to have collided with it at that time. Seismic tomographic images are also suggestive of a second, more southerly Neo-Tethyan oceanic slab in the lower mantle where the northernmost margin of India may have been located at ∼60 Ma. The geology of Tibet and the India -- Asia suture zone permits an alternative collision scenario in which the continental margin arc along southern Asia (the Gangdese arc) was split by extension beginning at ∼90 Ma, and along with its forearc to the south (the Xigaze forearc), rifted southward and opened a backarc ocean basin. The rifted arc collided with India at ∼60 Ma whereas the hypothetical backarc ocean basin may not have been consumed until ∼45 Ma. A compilation of igneous age data from Tibet shows that the most recent phase of Gangdese arc magmatism in the southern Lhasa terrane initiated at ∼70 Ma, peaked at ∼51 Ma, and terminated at ∼38 Ma. Cenozoic potassic-adakitic magmatism initiated at ∼45 Ma within a ∼200-km-wide elliptical area within the northern Qiangtang terrane, after which it swept westward and southward with time across central Tibet until ∼26 Ma. At 26 to 23 Ma, potassic-adakitic magmatism swept southward across the Lhasa terrane, a narrow (∼20 km width), orogen-parallel basin developed at low elevation along the axis of the India -- Asia suture zone (the Kailas basin), and Greater Himalayan Sequence rocks began extruding southward between the South Tibetan Detachment and Main Central Thrust. The Kailas basin was then uplifted to \>4 km elevation by ∼20 Ma, after which parts of the India -- Asia suture zone and Gangdese arc experienced \>6 km of exhumation (between ∼20 and 16 Ma). Between ∼16 and 12 Ma, slip along the South Tibetan Detachment terminated and east-west extension initiated in the northern Himalaya and Tibet. Potassic-adakitic magmatism in the Lhasa terrane shows a northward younging trend in the age of its termination, beginning at 20 to 18 Ma until volcanism ended at 8 Ma. We interpret the post-45 Ma geological evolution in the context of the subduction dynamics of Indian continental lithosphere and its interplay with delamination of Asian mantle lithosphere.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈涛完成签到,获得积分10
刚刚
研友_X89o6n完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
哲别发布了新的文献求助10
2秒前
2秒前
zk200107完成签到,获得积分20
2秒前
2秒前
2秒前
111完成签到 ,获得积分10
3秒前
smile发布了新的文献求助10
3秒前
英俊亦巧发布了新的文献求助20
3秒前
隐形曼青应助乐观之瑶采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
orixero应助名侦探柯基采纳,获得10
3秒前
随心发布了新的文献求助10
4秒前
浅柠半夏发布了新的文献求助10
4秒前
可靠之玉发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
茂茂发布了新的文献求助10
6秒前
6秒前
英姑应助赵光明采纳,获得10
6秒前
高兴山兰完成签到,获得积分20
6秒前
jys给jys的求助进行了留言
6秒前
杨建明发布了新的文献求助10
7秒前
7秒前
小熊发布了新的文献求助20
7秒前
8秒前
10秒前
高兴山兰发布了新的文献求助10
10秒前
哈哈哈哈完成签到,获得积分20
11秒前
共享精神应助lucky采纳,获得10
11秒前
梅子完成签到 ,获得积分10
13秒前
科研通AI6应助lxg采纳,获得10
13秒前
微风发布了新的文献求助10
14秒前
从容的大山完成签到,获得积分10
14秒前
葵明完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531780
求助须知:如何正确求助?哪些是违规求助? 4620574
关于积分的说明 14573778
捐赠科研通 4560339
什么是DOI,文献DOI怎么找? 2498813
邀请新用户注册赠送积分活动 1478687
关于科研通互助平台的介绍 1450049