A hybrid random forest to predict soccer matches in international tournaments

随机森林 协变量 排名(信息检索) 计算机科学 泊松分布 随机效应模型 泊松回归 统计 预测能力 锦标赛 可能性 数据集 集合(抽象数据类型) 计量经济学 机器学习 数据挖掘 数学 人工智能 逻辑回归 医学 人口 哲学 荟萃分析 人口学 认识论 组合数学 社会学 内科学 程序设计语言
作者
Andreas Groll,Christophe Ley,Gunther Schauberger,Hans Van Eetvelde
出处
期刊:Journal of Quantitative Analysis in Sports [De Gruyter]
卷期号:15 (4): 271-287 被引量:40
标识
DOI:10.1515/jqas-2018-0060
摘要

Abstract In this work, we propose a new hybrid modeling approach for the scores of international soccer matches which combines random forests with Poisson ranking methods . While the random forest is based on the competing teams’ covariate information, the latter method estimates ability parameters on historical match data that adequately reflect the current strength of the teams. We compare the new hybrid random forest model to its separate building blocks as well as to conventional Poisson regression models with regard to their predictive performance on all matches from the four FIFA World Cups 2002–2014. It turns out that by combining the random forest with the team ability parameters from the ranking methods as an additional covariate the predictive power can be improved substantially. Finally, the hybrid random forest is used (in advance of the tournament) to predict the FIFA World Cup 2018. To complete our analysis on the previous World Cup data, the corresponding 64 matches serve as an independent validation data set and we are able to confirm the compelling predictive potential of the hybrid random forest which clearly outperforms all other methods including the betting odds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助fanatic采纳,获得10
1秒前
Dead Cells完成签到,获得积分10
1秒前
Ava应助袁睿韬采纳,获得10
1秒前
Oil发布了新的文献求助10
2秒前
MrD完成签到,获得积分10
3秒前
快乐小子发布了新的文献求助10
3秒前
3秒前
小土豆完成签到,获得积分10
3秒前
自觉梦菲发布了新的文献求助10
3秒前
iron发布了新的文献求助10
3秒前
田様应助辛勤的尔烟采纳,获得10
3秒前
FashionBoy应助宝宝烤面包采纳,获得10
4秒前
拾柒发布了新的文献求助10
4秒前
科目三应助冷酷三德采纳,获得10
4秒前
5秒前
萧萧应助xiaoxioayixi采纳,获得10
5秒前
CipherSage应助池鱼思故渊采纳,获得10
5秒前
123发布了新的文献求助10
5秒前
北美意难忘完成签到,获得积分10
5秒前
5秒前
时间有泪1212完成签到 ,获得积分10
5秒前
6秒前
外向秋灵完成签到,获得积分10
6秒前
Mo完成签到,获得积分10
6秒前
陌陌完成签到,获得积分10
6秒前
Mandarine完成签到,获得积分10
6秒前
6秒前
大模型应助Patty采纳,获得10
6秒前
hahaha完成签到,获得积分10
8秒前
平凡中的限量版完成签到,获得积分10
8秒前
8秒前
半农应助梨花月采纳,获得10
8秒前
温柔的代曼完成签到,获得积分10
8秒前
雨点发布了新的文献求助10
8秒前
Hilda007应助刚睡醒采纳,获得10
9秒前
自觉梦菲完成签到,获得积分10
10秒前
AI完成签到,获得积分10
10秒前
务实的胡萝卜完成签到,获得积分10
10秒前
10秒前
吕万鹏发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006