Risk-DTRRT-Based Optimal Motion Planning Algorithm for Mobile Robots

弹道 树(集合论) 启发式 移动机器人 计算机科学 运动规划 算法 机器人 轨迹优化 随机树 数学优化 人工智能 数学 最优控制 数学分析 物理 天文
作者
Wenzheng Chi,Chaoqun Wang,Jiankun Wang,Max Q.‐H. Meng
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 1271-1288 被引量:58
标识
DOI:10.1109/tase.2018.2877963
摘要

In a human-robot coexisting environment, reaching the target place efficiently and safely is pivotal for a mobile service robot. In this paper, a Risk-based Dual-Tree Rapidly exploring Random Tree (Risk-DTRRT) algorithm is proposed for the robot motion planning in a dynamic environment, which provides a homotopy optimal trajectory on the basis of a heuristic trajectory. A dual-tree framework consisting of an RRT tree and a rewired tree is proposed for the trajectory searching. The RRT tree is a time-based tree, considering the future trajectory predictions of the pedestrians, and this tree is utilized to generate a heuristic trajectory. However, the heuristic trajectory is usually nonoptimal. Then, a line-of-sight (LoS) control checking algorithm is proposed to detect whether two time-based nodes can be rewired with the least cost. On the basis of the LoS control checking algorithm, a tree rewiring algorithm is proposed to optimize the heuristic trajectory. The tree generated in the tree rewiring process is called the rewired tree. The trajectory generated by the Risk-DTRRT algorithm proves to be optimal in the homotopy class of the heuristic trajectory. The navigation run time and the lengths of the planned trajectories are selected to demonstrate the effectiveness of the proposed algorithm. The experimental results in both simulation studies and real-world implementations reveal that our proposed method achieves convincing performance in both static and dynamic environments. Note to Practitioners-This paper is motivated by planning optimized trajectories for the mobile service robots in dynamic environments with pedestrians. In this area, the sampling-based motion planning algorithms have been widely used for their high efficiency and robustness. However, the real-time optimality of the motion planning cannot be guaranteed due to the challenges caused by the moving pedestrians. In this paper, we propose a dual-tree framework to solve this problem. First, a classic Rapidly exploring Random Tree (RRT) is constructed to generate a heuristic trajectory. Then, instead of reconnecting the nodes on the heuristic trajectory directly, a rewired tree is built to optimize the heuristic trajectory. This proposed dual-tree framework can fully exploit the information of the RRT tree and ensure the completeness of the motion planning. The proposed motion planning algorithm also considers the constraints of the nonholonomic mobile robots, and it can be applied in most mobile service robots to improve their motion planning quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ppp完成签到,获得积分10
刚刚
刚刚
wangchu发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
领导范儿应助填海采纳,获得10
3秒前
充电宝应助好运莲莲采纳,获得10
4秒前
5秒前
6秒前
田様应助酷炫邑采纳,获得10
6秒前
WooKawai完成签到,获得积分10
6秒前
7秒前
huangddg完成签到,获得积分10
7秒前
苏唱发布了新的文献求助10
7秒前
小毛熊发布了新的文献求助10
8秒前
精明松思发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
kiki完成签到,获得积分10
10秒前
11秒前
李山鬼发布了新的文献求助10
11秒前
Jasper应助玉米烤肠采纳,获得10
12秒前
12秒前
111完成签到,获得积分10
13秒前
13秒前
dwls应助科研通管家采纳,获得10
13秒前
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
ceeray23应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
ceeray23应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
小陈发布了新的文献求助10
13秒前
上官若男应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454966
求助须知:如何正确求助?哪些是违规求助? 3050269
关于积分的说明 9020709
捐赠科研通 2738874
什么是DOI,文献DOI怎么找? 1502329
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178