Decomposition-Based Multiobjective Optimization for Constrained Evolutionary Optimization

多目标优化 数学优化 进化算法 最优化问题 优化测试函数 水准点(测量) 分解 差异进化 计算机科学 帕累托原理 约束优化问题 连续优化 进化计算 多群优化 数学 大地测量学 生物 地理 生态学
作者
Bing-Chuan Wang,Han‐Xiong Li,Qingfu Zhang,Yong Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (1): 574-587 被引量:107
标识
DOI:10.1109/tsmc.2018.2876335
摘要

Pareto dominance-based multiobjective optimization has been successfully applied to constrained evolutionary optimization during the last two decades. However, as another famous multiobjective optimization framework, decomposition-based multiobjective optimization has not received sufficient attention from constrained evolutionary optimization. In this paper, we make use of decomposition-based multiobjective optimization to solve constrained optimization problems (COPs). In our method, first of all, a COP is transformed into a biobjective optimization problem (BOP). Afterward, the transformed BOP is decomposed into a number of scalar optimization subproblems. After generating an offspring for each subproblem by differential evolution, the weighted sum method is utilized for selection. In addition, to make decomposition-based multiobjective optimization suit the characteristics of constrained evolutionary optimization, weight vectors are elaborately adjusted. Moreover, for some extremely complicated COPs, a restart strategy is introduced to help the population jump out of a local optimum in the infeasible region. Extensive experiments on three sets of benchmark test functions, namely, 24 test functions from IEEE CEC2006, 36 test functions from IEEE CEC2010, and 56 test functions from IEEE CEC2017, have demonstrated that the proposed method shows better or at least competitive performance against other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
宁静致远完成签到,获得积分10
2秒前
千里发布了新的文献求助10
2秒前
我是老大应助tangsuyun采纳,获得10
2秒前
X7完成签到,获得积分10
2秒前
所所应助刘鹏宇采纳,获得10
3秒前
酷波er应助无情的白桃采纳,获得10
3秒前
科研通AI5应助小香草采纳,获得10
3秒前
星star完成签到 ,获得积分10
3秒前
4秒前
4秒前
调皮的千万完成签到,获得积分10
4秒前
狂野觅云发布了新的文献求助10
4秒前
4秒前
哈哈哈发布了新的文献求助10
4秒前
小星完成签到,获得积分10
4秒前
cc发布了新的文献求助10
5秒前
小石发布了新的文献求助10
5秒前
阿宝完成签到,获得积分10
5秒前
lsx完成签到 ,获得积分10
5秒前
Owen应助Dream采纳,获得30
5秒前
6秒前
www完成签到,获得积分20
6秒前
受伤的大米完成签到,获得积分10
6秒前
ssgecust完成签到,获得积分10
6秒前
科研通AI5应助Passion采纳,获得10
7秒前
MXJ完成签到,获得积分10
8秒前
科研通AI5应助热心的早晨采纳,获得10
8秒前
txy完成签到,获得积分10
8秒前
8秒前
GCY完成签到,获得积分10
8秒前
cc完成签到,获得积分10
8秒前
han完成签到,获得积分10
9秒前
111完成签到,获得积分20
9秒前
通~发布了新的文献求助10
10秒前
hhh关闭了hhh文献求助
10秒前
章丘吴彦祖完成签到,获得积分20
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740