Dynamic characterization of shock response in crystalline-metallic glass nanolaminates

材料科学 无定形固体 休克(循环) 复合材料 相(物质) 位错 冲击波 平面(几何) 非晶态金属 变形(气象学) 分子动力学 结晶学 机械 几何学 医学 物理 内科学 计算化学 有机化学 化学 数学 合金
作者
K. Vijay Reddy,Chuang Deng,Snehanshu Pal
出处
期刊:Acta Materialia [Elsevier]
卷期号:164: 347-361 被引量:56
标识
DOI:10.1016/j.actamat.2018.10.062
摘要

Abstract The dynamic response of crystalline Cu-amorphous Cu63Zr37 nanolaminates under shock loading has been investigated in the present study by atomistic simulations to provide an insight of their overall deformation behavior with respect to different grain structure in the crystalline region. The dynamic characterization of the structural evolution of the nanolaminates during shock loading has been carried out based on various techniques including common neighbor analysis, dislocation analysis, Voronoi cluster analysis, pressure profile, and kinetic energy maps. Pressure profiles of single crystalline Cu Cu63Zr37 metallic glass (SC/MG) nanolaminate at relatively low shock velocity show the presence of an elastic precursor in the crystalline region owing to the plane-plane collision phenomenon. Increasing the shock velocities in the SC/MG specimen results in FCC to BCC phase transition in the crystalline region. In particular, the crystalline/amorphous interface causes the generation of reflected rarefaction wave back into the crystalline region which aids in the evolution and stabilization of the BCC phase. In the NC/MG specimen, the misalignment of planes across different grains reduces the intensity of elastic precursor at low shock velocity due to disruption in the plane-plane collision, whereas the grain boundaries act as nucleating region for the BCC phase during the high-velocity shock propagation. The coordination number of the Cu63Zr37 glass region has been found to increase during high-velocity shock loading which can be accounted by the formation of and indexed Voronoi polyhedra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
反杀闰土的猹完成签到 ,获得积分20
刚刚
所所应助cc采纳,获得10
1秒前
邵裘完成签到,获得积分10
1秒前
丘比特应助yin采纳,获得10
1秒前
2秒前
2秒前
2秒前
希望天下0贩的0应助sss采纳,获得20
2秒前
拼搏向前发布了新的文献求助10
2秒前
紫罗兰花海完成签到 ,获得积分10
3秒前
琪琪完成签到,获得积分10
4秒前
4秒前
爆米花应助高兴藏花采纳,获得10
4秒前
orixero应助Rrr采纳,获得10
4秒前
5秒前
张今天也要做科研呀完成签到,获得积分10
5秒前
humorlife完成签到,获得积分10
5秒前
打打应助给我找采纳,获得10
6秒前
酷波er应助谦让的含海采纳,获得10
6秒前
6秒前
shrike发布了新的文献求助10
6秒前
心灵美半邪完成签到 ,获得积分10
8秒前
wanci应助星晴遇见花海采纳,获得10
8秒前
8秒前
MILL完成签到,获得积分20
8秒前
卡卡发布了新的文献求助10
8秒前
今后应助九城采纳,获得10
9秒前
9秒前
我是125应助凶狠的乐巧采纳,获得10
9秒前
9秒前
开心的火龙果完成签到,获得积分10
10秒前
科研通AI2S应助长夜变清早采纳,获得10
10秒前
su发布了新的文献求助10
10秒前
明理的访风完成签到,获得积分10
10秒前
小马哥完成签到,获得积分10
11秒前
11秒前
jy发布了新的文献求助10
12秒前
西柚完成签到,获得积分0
12秒前
12秒前
大脸妹发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794