已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic characterization of shock response in crystalline-metallic glass nanolaminates

材料科学 无定形固体 休克(循环) 复合材料 相(物质) 位错 冲击波 平面(几何) 非晶态金属 变形(气象学) 分子动力学 结晶学 机械 几何学 医学 物理 内科学 计算化学 有机化学 化学 数学 合金
作者
K. Vijay Reddy,Chuang Deng,Snehanshu Pal
出处
期刊:Acta Materialia [Elsevier]
卷期号:164: 347-361 被引量:60
标识
DOI:10.1016/j.actamat.2018.10.062
摘要

Abstract The dynamic response of crystalline Cu-amorphous Cu63Zr37 nanolaminates under shock loading has been investigated in the present study by atomistic simulations to provide an insight of their overall deformation behavior with respect to different grain structure in the crystalline region. The dynamic characterization of the structural evolution of the nanolaminates during shock loading has been carried out based on various techniques including common neighbor analysis, dislocation analysis, Voronoi cluster analysis, pressure profile, and kinetic energy maps. Pressure profiles of single crystalline Cu Cu63Zr37 metallic glass (SC/MG) nanolaminate at relatively low shock velocity show the presence of an elastic precursor in the crystalline region owing to the plane-plane collision phenomenon. Increasing the shock velocities in the SC/MG specimen results in FCC to BCC phase transition in the crystalline region. In particular, the crystalline/amorphous interface causes the generation of reflected rarefaction wave back into the crystalline region which aids in the evolution and stabilization of the BCC phase. In the NC/MG specimen, the misalignment of planes across different grains reduces the intensity of elastic precursor at low shock velocity due to disruption in the plane-plane collision, whereas the grain boundaries act as nucleating region for the BCC phase during the high-velocity shock propagation. The coordination number of the Cu63Zr37 glass region has been found to increase during high-velocity shock loading which can be accounted by the formation of and indexed Voronoi polyhedra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Aug31完成签到 ,获得积分10
1秒前
茄茄女士完成签到 ,获得积分10
2秒前
大大怪完成签到 ,获得积分10
7秒前
11秒前
温暖的聪展完成签到 ,获得积分10
11秒前
wr完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
完成第一篇完成签到 ,获得积分10
15秒前
无限铸海发布了新的文献求助10
15秒前
结实的小土豆完成签到 ,获得积分10
19秒前
光亮的冰薇完成签到 ,获得积分10
22秒前
在水一方应助勤劳莹芝采纳,获得10
34秒前
orixero应助oyxz采纳,获得10
34秒前
HONG完成签到 ,获得积分10
35秒前
35秒前
Jasper应助科研通管家采纳,获得10
36秒前
木又应助科研通管家采纳,获得10
37秒前
SciGPT应助科研通管家采纳,获得10
37秒前
37秒前
Raven应助科研通管家采纳,获得10
37秒前
浮游应助科研通管家采纳,获得10
37秒前
哈基米德应助科研通管家采纳,获得10
37秒前
哈基米德应助科研通管家采纳,获得10
37秒前
37秒前
哈基米德应助科研通管家采纳,获得10
37秒前
哈基米德应助科研通管家采纳,获得25
37秒前
打打应助科研通管家采纳,获得10
37秒前
38秒前
彭于晏应助科研通管家采纳,获得10
38秒前
Criminology34应助科研通管家采纳,获得10
38秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
酷波er应助科研通管家采纳,获得10
38秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
FashionBoy应助科研通管家采纳,获得10
38秒前
xxfsx应助科研通管家采纳,获得10
38秒前
情怀应助科研通管家采纳,获得10
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290666
求助须知:如何正确求助?哪些是违规求助? 4442020
关于积分的说明 13828956
捐赠科研通 4324772
什么是DOI,文献DOI怎么找? 2373838
邀请新用户注册赠送积分活动 1369227
关于科研通互助平台的介绍 1333275