薄膜中的扩散梯度
离子强度
化学
环境化学
原位
水生环境
扩散
琼脂糖
色谱法
金属
生态学
水溶液
物理
有机化学
物理化学
生物
热力学
作者
Delin Zhang,Yuanting Zhu,Xianchuan Xie,Chao Han,Hao Zhang,Li‐Jun Zhou,Meng Li,Guizhou Xu,Lu Jiang,Aimin Li
标识
DOI:10.1016/j.watres.2019.03.092
摘要
Nitrochlorobenzene compounds (NCBs) are of key interest in environmental monitoring due to their high toxicity. To better understand the presence and fate of NCBs in aquatic environments, an in-situ sampling technique of diffusive gradients in thin films (DGT) based on hydrophilic-lipophilic-balanced (HLB) resin, combined with gas chromatography, was developed to measure four typical NCBs, e.g. meta-chloronitrobenzene (MNCB), para-chloronitrobenzene (PNCB), ortho-chloronitrobenzene (ONCB), and 2,4-dinitrochlorobenzene (CDNB). The diffusion coefficients of MNCB, PNCB, ONCB, and CDNB in agarose-based gel were firstly determined in diffusion cell experiments and ranged from 7.19 × 10-6 to 7.49 × 10-6 cm/s. The capacities of HLB-DGT for MNCB, PNCB, ONCB, and CDNB were higher than 114.65, 117.52, 117.72, and 37.58 μg/cm2, respectively. The HLB-DGT performance on NCBs determination was demonstrated to be independent of natural fluctuations in pH (3-9), ionic strength (0.001-0.5 M), and dissolved organic matter concentrations (0-20 mg/L) and of deployment time (0-120 h). In the field application, the DGT-based method to measure NCBs not only proved to be accurate and effective, but also performed better than the grab sampling method under the variable conditions. This study demonstrates that the newly developed in-situ method based on DGT can provide an attractive alternative for the routine monitoring of NCBs in aquatic environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI