Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.)

普通大麦 光合作用 开枪 叶绿体 叶绿素 化学 生物 颖果 植物 光系统II 园艺 禾本科 生物化学 基因
作者
Hüseyin Tombuloğlu,Y. Slimani,Güzin Tombuloğlu,M.A. Almessiere,A. Baykal
出处
期刊:Chemosphere [Elsevier BV]
卷期号:226: 110-122 被引量:154
标识
DOI:10.1016/j.chemosphere.2019.03.075
摘要

This study investigates the fate and impact of iron oxide or magnetite (Fe3O4, ∼13 nm in size) nanoparticles (NPs) in barley (Hordeum vulgare L.), a common crop cultivated around the world. Barley seedlings were grown in hydroponic culture for three weeks to include NPs (125, 250, 500, and 1000 mg/L). Transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) techniques were used to assess their uptake and translocation. Photosynthesis marker genes were quantified by RT-qPCR. Results revealed that increasing doses of Fe3O4 NPs were gradually enhanced the plant growth up to 500 mg/L, which promoted the fresh weight (FW) respectively ∼19% and ∼88% for leaf and root tissues than the ones for control. No phytotoxic effect was recorded even at high NPs doses. NPs inclusion increased some phenological parameters such as chlorophyll, total soluble protein, number of chloroplasts, and dry weight. High NPs doses dramatically reduced the catalase activity and hydrogen peroxide content, suggesting a possible function of NPs as nanozyme in vivo. TEM observations showed that Fe3O4 NPs penetrated and internalized in the root cells. In leaves, they were mostly existed at the surrounding cell wall, suggesting their translocation from root to shoot without cellular penetration. Further analysis by using VSM confirmed the existence of Fe3O4 NPs in leaves which result in dramatic alterations of the photosystem genes (PetA, psaA, BCA and psbA). In conclusion, barley plants uptake and translocate Fe3O4 NPs, which promoted the plant growth probably due to the promoted gene expression and efficient photosynthetic activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色的夏瑶完成签到,获得积分10
1秒前
咖啡豆完成签到 ,获得积分10
1秒前
美丽忆梅完成签到,获得积分10
1秒前
初昀杭完成签到 ,获得积分10
1秒前
周文丽完成签到,获得积分20
1秒前
feng8848完成签到,获得积分10
3秒前
三石发布了新的文献求助10
3秒前
科研通AI5应助诚心的信封采纳,获得10
4秒前
5秒前
June完成签到,获得积分10
5秒前
等下完这场雨完成签到,获得积分10
6秒前
深情安青应助......采纳,获得10
6秒前
邝边边完成签到,获得积分10
7秒前
8秒前
8秒前
高大的一笑完成签到,获得积分20
8秒前
DK发布了新的文献求助10
9秒前
Chandler完成签到,获得积分10
10秒前
合适忆南完成签到,获得积分10
10秒前
t通应助welkin采纳,获得10
11秒前
歆兴欣完成签到 ,获得积分10
12秒前
12秒前
Frank发布了新的文献求助10
12秒前
洪亮完成签到,获得积分0
12秒前
祁樊完成签到,获得积分10
12秒前
饱满的大碗完成签到 ,获得积分10
13秒前
白金之星完成签到 ,获得积分10
13秒前
科研通AI5应助Xenia采纳,获得10
14秒前
忧郁的平安完成签到,获得积分10
15秒前
15秒前
changyixin'完成签到,获得积分10
15秒前
丘比特应助Frank采纳,获得10
16秒前
Mason完成签到,获得积分10
16秒前
DK完成签到,获得积分10
16秒前
17秒前
18秒前
依妍完成签到,获得积分10
18秒前
18秒前
20秒前
银杏发布了新的文献求助10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773842
求助须知:如何正确求助?哪些是违规求助? 3319455
关于积分的说明 10195161
捐赠科研通 3034050
什么是DOI,文献DOI怎么找? 1664925
邀请新用户注册赠送积分活动 796399
科研通“疑难数据库(出版商)”最低求助积分说明 757443