A Special Points-Based Hybrid Prediction Strategy for Dynamic Multi-Objective Optimization

差异进化 计算机科学 人口 数学优化 进化算法 最优化问题 点(几何) 分解 数据挖掘 机器学习 人工智能 算法 数学 几何学 生物 社会学 人口学 生态学
作者
Jianxia Li,Ruochen Liu,Ruinan Wang,Jin Liu,Caihong Mu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 62496-62510 被引量:11
标识
DOI:10.1109/access.2019.2916082
摘要

Dynamic multi-objective optimization problem (DMOP) is such a type of optimization problems that multiple contradictory objectives change over time.This paper designs a special point-based hybrid prediction strategy (SHPS) integrated into the decomposition-based multi-objective optimization algorithm with differential evolution (MOEA/D-DE) to handle DMOPs, which is denoted as MOEA/D-DE-SHPS.In the SHPS, when historical information is insufficient to establish prediction model of population prediction strategy (PPS), the prediction (PRE) and variation (VAR) method are adapted to generate the initial population of the new environment.Meanwhile, the PPS predicts the whole population of new environment according to the history information collected from past environments; therefore, once collected historical information is inaccurate, the predicted population may be located in the wrong search region.To overcome the shortcoming, we propose the special point-based strategy in which the initial population of the new environment consists of two parts of individuals: the predicted special points and the predicted population by PPS (except the special points).The empirical results show that MOEA/D-DE-SHPS is promising for handling DMOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yud完成签到 ,获得积分10
刚刚
1秒前
拼搏思卉发布了新的文献求助10
1秒前
2秒前
雨碎寒江完成签到,获得积分10
2秒前
3秒前
会飞的木头完成签到,获得积分10
3秒前
雪白涵山发布了新的文献求助20
3秒前
shouyu29应助MADKAI采纳,获得10
3秒前
Seiswan发布了新的文献求助10
3秒前
小小菜鸟完成签到,获得积分10
4秒前
4秒前
西西弗斯完成签到,获得积分10
4秒前
KT2440完成签到,获得积分10
5秒前
顾阿秀发布了新的文献求助10
5秒前
5秒前
5秒前
gnr2000完成签到,获得积分0
5秒前
6秒前
6秒前
BareBear应助赖道之采纳,获得10
6秒前
LEMON完成签到,获得积分10
6秒前
Ava应助buuyoo采纳,获得10
7秒前
情怀应助liuwei采纳,获得10
7秒前
aaefv完成签到,获得积分10
7秒前
小小菜鸟发布了新的文献求助10
7秒前
深情安青应助123采纳,获得10
7秒前
赫初晴完成签到 ,获得积分10
7秒前
平淡的亦丝应助明研采纳,获得20
7秒前
9秒前
库外发布了新的文献求助10
10秒前
汉堡包应助清新的冷松采纳,获得10
10秒前
从心应助LiShin采纳,获得10
10秒前
帅气的听莲完成签到,获得积分10
10秒前
英姑应助Areslcy采纳,获得10
10秒前
善学以致用应助zxz采纳,获得10
11秒前
whatever应助luoshi采纳,获得10
12秒前
12秒前
科研通AI5应助徐徐采纳,获得10
13秒前
shouyu29应助MADKAI采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762