计算机科学
深度学习
欠采样
混叠
人工智能
相(物质)
人工神经网络
相位展开
噪音(视频)
深层神经网络
相位噪声
算法
模式识别(心理学)
光学
干涉测量
图像(数学)
物理
量子力学
作者
Kaiqiang Wang,Ying Li,Qian Kemao,Jianglei Di,Jianlin Zhao
出处
期刊:Optics Express
[The Optical Society]
日期:2019-05-10
卷期号:27 (10): 15100-15100
被引量:261
摘要
Phase unwrapping is an important but challenging issue in phase measurement. Even with the research efforts of a few decades, unfortunately, the problem remains not well solved, especially when heavy noise and aliasing (undersampling) are present. We propose a database generation method for phase-type objects and a one-step deep learning phase unwrapping method. With a trained deep neural network, the unseen phase fields of living mouse osteoblasts and dynamic candle flame are successfully unwrapped, demonstrating that the complicated nonlinear phase unwrapping task can be directly fulfilled in one step by a single deep neural network. Excellent anti-noise and anti-aliasing performances outperforming classical methods are highlighted in this paper.
科研通智能强力驱动
Strongly Powered by AbleSci AI