Raman spectroscopic techniques to detect ovarian cancer biomarkers in blood plasma

卵巢癌 拉曼光谱 癌症 内科学 化学 诊断准确性 表面增强拉曼光谱 肿瘤科 胃肠病学 病理 医学 拉曼散射 光学 物理
作者
Maria Paraskevaidi,Katherine M. Ashton,Helen F. Stringfellow,Nick Wood,Patrick Keating,Anthony W. Rowbottom,Pierre L. Martin‐Hirsch,Francis L. Martin
出处
期刊:Talanta [Elsevier]
卷期号:189: 281-288 被引量:60
标识
DOI:10.1016/j.talanta.2018.06.084
摘要

Robust diagnosis of ovarian cancer is crucial to improve patient outcomes. The lack of a single and accurate diagnostic approach necessitates the advent of novel methods in the field. In the present study, two spectroscopic techniques, Raman and surface-enhanced Raman spectroscopy (SERS) using silver nanoparticles, have been employed to identify signatures linked to cancer in blood. Blood plasma samples were collected from 27 patients with ovarian cancer and 28 with benign gynecological conditions, the majority of which had a prolapse. Early ovarian cancer cases were also included in the cohort (n = 17). The derived information was processed to account for differences between cancerous and healthy individuals and a support vector machine (SVM) algorithm was applied for classification. A subgroup analysis using CA-125 levels was also conducted to rule out that the observed segregation was due to CA-125 differences between patients and controls. Both techniques provided satisfactory diagnostic accuracy for the detection of ovarian cancer, with spontaneous Raman achieving 94% sensitivity and 96% specificity and SERS 87% sensitivity and 89% specificity. For early ovarian cancer, Raman achieved sensitivity and specificity of 93% and 97%, respectively, while SERS had 80% sensitivity and 94% specificity. Five spectral biomarkers were detected by both techniques and could be utilised as a panel of markers indicating carcinogenesis. CA-125 levels did not seem to undermine the high classification accuracies. This minimally invasive test may provide an alternative diagnostic and screening tool for ovarian cancer that is superior to other established blood-based biomarkers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dean应助伤心词香菇酱采纳,获得50
刚刚
1秒前
1秒前
1秒前
2秒前
3秒前
3秒前
11发布了新的文献求助10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
小鱼发布了新的文献求助10
6秒前
脑洞疼应助纯真的魔镜采纳,获得10
7秒前
7秒前
8秒前
zeran完成签到,获得积分10
8秒前
星辰大海应助Catherine_Song采纳,获得10
8秒前
龙江游侠发布了新的文献求助10
9秒前
英姑应助ZZZLJ采纳,获得10
10秒前
sunshine完成签到,获得积分10
11秒前
含蓄青雪发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
kingmp2完成签到 ,获得积分10
14秒前
15秒前
17秒前
会飞的扁担完成签到,获得积分10
17秒前
17秒前
领导范儿应助冷静的孤云采纳,获得10
18秒前
o椰完成签到 ,获得积分10
18秒前
龙江游侠完成签到,获得积分10
19秒前
bravo驳回了orixero应助
21秒前
菠萝发布了新的文献求助10
21秒前
24秒前
木耳完成签到 ,获得积分10
24秒前
24秒前
24秒前
24秒前
科目三应助草莓熊采纳,获得10
26秒前
星辰大海应助鹤轸采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777790
求助须知:如何正确求助?哪些是违规求助? 5635616
关于积分的说明 15446728
捐赠科研通 4909661
什么是DOI,文献DOI怎么找? 2641847
邀请新用户注册赠送积分活动 1589769
关于科研通互助平台的介绍 1544261