Raman spectroscopic techniques to detect ovarian cancer biomarkers in blood plasma

卵巢癌 拉曼光谱 癌症 内科学 化学 诊断准确性 表面增强拉曼光谱 肿瘤科 胃肠病学 病理 医学 拉曼散射 光学 物理
作者
Maria Paraskevaidi,Katherine M. Ashton,Helen F. Stringfellow,Nick Wood,Patrick Keating,Anthony W. Rowbottom,Pierre L. Martin‐Hirsch,Francis L. Martin
出处
期刊:Talanta [Elsevier]
卷期号:189: 281-288 被引量:60
标识
DOI:10.1016/j.talanta.2018.06.084
摘要

Robust diagnosis of ovarian cancer is crucial to improve patient outcomes. The lack of a single and accurate diagnostic approach necessitates the advent of novel methods in the field. In the present study, two spectroscopic techniques, Raman and surface-enhanced Raman spectroscopy (SERS) using silver nanoparticles, have been employed to identify signatures linked to cancer in blood. Blood plasma samples were collected from 27 patients with ovarian cancer and 28 with benign gynecological conditions, the majority of which had a prolapse. Early ovarian cancer cases were also included in the cohort (n = 17). The derived information was processed to account for differences between cancerous and healthy individuals and a support vector machine (SVM) algorithm was applied for classification. A subgroup analysis using CA-125 levels was also conducted to rule out that the observed segregation was due to CA-125 differences between patients and controls. Both techniques provided satisfactory diagnostic accuracy for the detection of ovarian cancer, with spontaneous Raman achieving 94% sensitivity and 96% specificity and SERS 87% sensitivity and 89% specificity. For early ovarian cancer, Raman achieved sensitivity and specificity of 93% and 97%, respectively, while SERS had 80% sensitivity and 94% specificity. Five spectral biomarkers were detected by both techniques and could be utilised as a panel of markers indicating carcinogenesis. CA-125 levels did not seem to undermine the high classification accuracies. This minimally invasive test may provide an alternative diagnostic and screening tool for ovarian cancer that is superior to other established blood-based biomarkers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三岁应助智商洼地采纳,获得10
刚刚
哦啦啦完成签到,获得积分10
刚刚
1秒前
李爱国应助要努力鸭采纳,获得10
2秒前
南风知我意完成签到,获得积分10
2秒前
xj发布了新的文献求助10
2秒前
充电宝应助无风风采纳,获得10
2秒前
小小精神完成签到,获得积分10
2秒前
zanedou完成签到,获得积分10
3秒前
结实的大迷糊完成签到,获得积分10
3秒前
ReimuRin完成签到,获得积分10
4秒前
bluueboom发布了新的文献求助10
4秒前
远不止这些完成签到,获得积分10
4秒前
4秒前
hsjsk完成签到,获得积分10
4秒前
meng发布了新的文献求助150
4秒前
4秒前
星辰大海应助Lxy采纳,获得10
5秒前
wmszhd发布了新的文献求助10
5秒前
5秒前
科研通AI6应助alec采纳,获得10
5秒前
惠戾完成签到,获得积分10
6秒前
咖啡苦咔咔完成签到 ,获得积分10
6秒前
6秒前
orixero应助研友_LmVygn采纳,获得10
6秒前
7秒前
个o个完成签到,获得积分10
7秒前
小骄傲发布了新的文献求助10
7秒前
威武的元冬完成签到,获得积分10
7秒前
lyon完成签到,获得积分10
7秒前
靓丽白梦完成签到,获得积分10
8秒前
8秒前
bluer完成签到,获得积分10
8秒前
香蕉觅云应助学术小白采纳,获得10
8秒前
周欣玙完成签到,获得积分10
8秒前
Ava应助嘉嘉采纳,获得10
9秒前
huangjs发布了新的文献求助10
9秒前
简单7879完成签到,获得积分10
9秒前
shishikai发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645662
求助须知:如何正确求助?哪些是违规求助? 4769440
关于积分的说明 15031321
捐赠科研通 4804378
什么是DOI,文献DOI怎么找? 2568968
邀请新用户注册赠送积分活动 1526089
关于科研通互助平台的介绍 1485700