Raman spectroscopic techniques to detect ovarian cancer biomarkers in blood plasma

卵巢癌 拉曼光谱 癌症 内科学 化学 诊断准确性 表面增强拉曼光谱 肿瘤科 胃肠病学 病理 医学 拉曼散射 光学 物理
作者
Maria Paraskevaidi,Katherine M. Ashton,Helen F. Stringfellow,Nick Wood,Patrick Keating,Anthony W. Rowbottom,Pierre L. Martin‐Hirsch,Francis L. Martin
出处
期刊:Talanta [Elsevier]
卷期号:189: 281-288 被引量:60
标识
DOI:10.1016/j.talanta.2018.06.084
摘要

Robust diagnosis of ovarian cancer is crucial to improve patient outcomes. The lack of a single and accurate diagnostic approach necessitates the advent of novel methods in the field. In the present study, two spectroscopic techniques, Raman and surface-enhanced Raman spectroscopy (SERS) using silver nanoparticles, have been employed to identify signatures linked to cancer in blood. Blood plasma samples were collected from 27 patients with ovarian cancer and 28 with benign gynecological conditions, the majority of which had a prolapse. Early ovarian cancer cases were also included in the cohort (n = 17). The derived information was processed to account for differences between cancerous and healthy individuals and a support vector machine (SVM) algorithm was applied for classification. A subgroup analysis using CA-125 levels was also conducted to rule out that the observed segregation was due to CA-125 differences between patients and controls. Both techniques provided satisfactory diagnostic accuracy for the detection of ovarian cancer, with spontaneous Raman achieving 94% sensitivity and 96% specificity and SERS 87% sensitivity and 89% specificity. For early ovarian cancer, Raman achieved sensitivity and specificity of 93% and 97%, respectively, while SERS had 80% sensitivity and 94% specificity. Five spectral biomarkers were detected by both techniques and could be utilised as a panel of markers indicating carcinogenesis. CA-125 levels did not seem to undermine the high classification accuracies. This minimally invasive test may provide an alternative diagnostic and screening tool for ovarian cancer that is superior to other established blood-based biomarkers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yiwan完成签到,获得积分10
1秒前
善良的紫山完成签到,获得积分20
1秒前
2秒前
所所应助Cutewm采纳,获得10
2秒前
2秒前
wrx完成签到,获得积分20
3秒前
scott完成签到,获得积分10
3秒前
3秒前
Jasper应助北极星采纳,获得10
4秒前
XXXXX发布了新的文献求助20
4秒前
yiwan发布了新的文献求助10
4秒前
Lucas应助zy采纳,获得10
4秒前
wrx发布了新的文献求助10
5秒前
hony完成签到,获得积分10
5秒前
5秒前
obto发布了新的文献求助10
5秒前
哈哈哈哈发布了新的文献求助10
6秒前
狂跳的脉搏完成签到,获得积分10
6秒前
6秒前
6秒前
waiting完成签到,获得积分10
7秒前
7秒前
浮光完成签到,获得积分10
7秒前
7秒前
amy完成签到,获得积分10
7秒前
7秒前
mosisa完成签到,获得积分10
8秒前
和谐皮卡丘完成签到,获得积分20
8秒前
等待的剑身完成签到,获得积分10
8秒前
9秒前
9秒前
科研通AI6应助早川木槿采纳,获得10
9秒前
故里完成签到,获得积分10
9秒前
黑白芋头完成签到,获得积分10
9秒前
二尖瓣后叶完成签到,获得积分10
9秒前
弘一完成签到,获得积分10
9秒前
一米阳光发布了新的文献求助10
9秒前
签儿儿儿完成签到 ,获得积分10
9秒前
最好是完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005