Surrogate-assisted particle swarm optimization algorithm with Pareto active learning for expensive multi-objective optimization

粒子群优化 帕累托原理 数学优化 计算机科学 多目标优化 元启发式 趋同(经济学) 多群优化 算法 水准点(测量) 数学 大地测量学 经济增长 经济 地理
作者
Zhiming Lv,Linqing Wang,Zhongyang Han,Jun Zhao,Wei Wang
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:6 (3): 838-849 被引量:129
标识
DOI:10.1109/jas.2019.1911450
摘要

For multi-objective optimization problems, particle swarm optimization (PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially time-consuming when handling computationally expensive fitness functions. In order to save the computational cost, a surrogate-assisted PSO with Pareto active learning is proposed. In real physical space (the objective functions are computationally expensive), PSO is used as an optimizer, and its optimization results are used to construct the surrogate models. In virtual space, objective functions are replaced by the cheaper surrogate models, PSO is viewed as a sampler to produce the candidate solutions. To enhance the quality of candidate solutions, a hybrid mutation sampling method based on the simulated evolution is proposed, which combines the advantage of fast convergence of PSO and implements mutation to increase diversity. Furthermore, ε-Pareto active learning (ε-PAL) method is employed to pre-select candidate solutions to guide PSO in the real physical space. However, little work has considered the method of determining parameter ε. Therefore, a greedy search method is presented to determine the value of ε where the number of active sampling is employed as the evaluation criteria of classification cost. Experimental studies involving application on a number of benchmark test problems and parameter determination for multi-input multi-output least squares support vector machines (MLSSVM) are given, in which the results demonstrate promising performance of the proposed algorithm compared with other representative multi-objective particle swarm optimization (MOPSO) algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SS11发布了新的文献求助30
刚刚
冷酷秋柳发布了新的文献求助10
刚刚
wdzz发布了新的文献求助10
刚刚
CodeCraft应助小样采纳,获得10
1秒前
JamesPei应助刘璇2采纳,获得10
1秒前
Orange应助WW采纳,获得10
1秒前
MING发布了新的文献求助10
2秒前
突突突完成签到,获得积分10
2秒前
2秒前
academician完成签到,获得积分20
2秒前
张楚懿完成签到,获得积分10
3秒前
3秒前
思源应助靖123456采纳,获得10
3秒前
4秒前
突突突发布了新的文献求助10
4秒前
SciGPT应助CEJ采纳,获得10
4秒前
不良帅完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
kele发布了新的文献求助10
9秒前
不安青牛应助知性的骁采纳,获得10
9秒前
11秒前
义气的灯泡完成签到,获得积分10
11秒前
12秒前
ceeray23应助suibian采纳,获得10
12秒前
12秒前
Ava应助123采纳,获得10
12秒前
chr发布了新的文献求助10
13秒前
QXS发布了新的文献求助10
14秒前
刘璇2发布了新的文献求助10
14秒前
传奇3应助zhBian采纳,获得10
15秒前
16秒前
li发布了新的文献求助10
16秒前
16秒前
tkdmxl发布了新的文献求助10
17秒前
小样发布了新的文献求助10
17秒前
Orange应助呆哈哈采纳,获得10
17秒前
xxc应助科研通管家采纳,获得10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455021
求助须知:如何正确求助?哪些是违规求助? 3050304
关于积分的说明 9020908
捐赠科研通 2738923
什么是DOI,文献DOI怎么找? 1502343
科研通“疑难数据库(出版商)”最低求助积分说明 694500
邀请新用户注册赠送积分活动 693191