加密
计算机科学
文件系统级加密
可扩展性
对称密钥算法
动态加密
56位加密
密码原语
密码学
40位加密
客户端加密
方案(数学)
概率加密
理论计算机科学
计算机安全
构造(python库)
计算机网络
公钥密码术
密码协议
数据库
数学
数学分析
作者
Shi-Feng Sun,Xingliang Yuan,Joseph K. Liu,Ron Steinfeld,Amin Sakzad,Viet Vo,Surya Nepal
出处
期刊:Computer and Communications Security
日期:2018-10-15
被引量:158
标识
DOI:10.1145/3243734.3243782
摘要
Symmetric Searchable Encryption (SSE) has received wide attention due to its practical application in searching on encrypted data. Beyond search, data addition and deletion are also supported in dynamic SSE schemes. Unfortunately, these update operations leak some information of updated data. To address this issue, forward-secure SSE is actively explored to protect the relations of newly updated data and previously searched keywords. On the contrary, little work has been done in backward security, which enforces that search should not reveal information of deleted data. In this paper, we propose the first practical and non-interactive backward-secure SSE scheme. In particular, we introduce a new form of symmetric encryption, named symmetric puncturable encryption (SPE), and construct a generic primitive from simple cryptographic tools. Based on this primitive, we then present a backward-secure SSE scheme that can revoke a server's searching ability on deleted data. We instantiate our scheme with a practical puncturable pseudorandom function and implement it on a large dataset. The experimental results demonstrate its efficiency and scalability. Compared to the state-of-the-art, our scheme achieves a speedup of almost 50x in search latency, and a saving of 62% in server storage consumption.
科研通智能强力驱动
Strongly Powered by AbleSci AI