Ultrasmall Grained Pd Nanopattern H2 Sensor.

粒度 材料科学 可控性 磁滞 纳米技术 纳米结构 光电子学 化学物理 凝聚态物理 化学 复合材料 物理 应用数学 数学
作者
Soo-Yeon Cho,Hyunah Ahn,Kang-Ho Park,Jung-Hoon Choi,Hohyung Kang,Hannes Jung
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:3 (9): 1876-1883 被引量:67
标识
DOI:10.1021/acssensors.8b00834
摘要

Precise control of the size and interfaces of Pd grains is very important for designing a high-performance H2 sensing channel because the transition of the Pd phase from α to β occurs through units of single grains. However, unfortunately, the grain controllability of previous approaches has been limited to grains exceeding 10 nm in size and simple macroscopic channel structures have only shown monotonic response behavior for a wide concentration range of H2. In this work, for the first time, we found that Pd channels that are precisely grain-controlled show very different H2 sensing behavior. They display dual-switching response behavior with simultaneous variation of the positive and negative response direction within single sensor. The Pd nanopattern channel having smallest grain size/interface among previous works could be fabricated via unique lithographic approaches involving low-energy plasma (Ar+) bombardment. The ultrasmall grain size (5 nm) and narrow interface gap (<2 nm) controlled by Ar+ plasma bombardment enabled both the hydrogen-induced lattice expansion (HILE) (Δ RH2 < 0) and surface electron scattering (Δ RH2 > 0) mechanisms to be simultaneously applied to the single Pd channel, thereby inducing dual-switching response according to the H2 concentration range. In addition, the unique high-aspect-ratio high-resolution morphological characteristics made it possible to achieve highly sensitive H2 detecting performance (limit of detection: 2.5 ppm) without any hysteresis and irreversible performance degradation. These noteworthy new insights are attributed to high-resolution control of the grain size and the interfaces with the Pd nanostructure channel.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guoyuanrong关注了科研通微信公众号
刚刚
xigua完成签到,获得积分10
刚刚
我是老大应助阿居采纳,获得10
1秒前
Handy完成签到,获得积分0
2秒前
和谐亦瑶完成签到,获得积分10
3秒前
平淡远山发布了新的文献求助50
3秒前
guo发布了新的文献求助10
4秒前
852应助vcjbbvb采纳,获得10
5秒前
ceeray23发布了新的文献求助20
6秒前
7秒前
上官若男应助冷静采纳,获得10
7秒前
天天快乐应助典雅的捕采纳,获得10
7秒前
8秒前
笑点低易真完成签到,获得积分10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
liao应助科研通管家采纳,获得10
8秒前
8秒前
wanci应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
9秒前
xmr1019应助科研通管家采纳,获得10
9秒前
9秒前
zgrmws应助科研通管家采纳,获得20
9秒前
华仔应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
bo完成签到,获得积分10
9秒前
wy.he应助科研通管家采纳,获得60
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
spc68应助科研通管家采纳,获得10
9秒前
liao应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684108
求助须知:如何正确求助?哪些是违规求助? 5035205
关于积分的说明 15183583
捐赠科研通 4843435
什么是DOI,文献DOI怎么找? 2596688
邀请新用户注册赠送积分活动 1549396
关于科研通互助平台的介绍 1507893