Ultrasmall Grained Pd Nanopattern H2 Sensor.

粒度 材料科学 可控性 磁滞 纳米技术 纳米结构 光电子学 化学物理 凝聚态物理 化学 复合材料 物理 应用数学 数学
作者
Soo-Yeon Cho,Hyunah Ahn,Kang-Ho Park,Jung-Hoon Choi,Hohyung Kang,Hannes Jung
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:3 (9): 1876-1883 被引量:67
标识
DOI:10.1021/acssensors.8b00834
摘要

Precise control of the size and interfaces of Pd grains is very important for designing a high-performance H2 sensing channel because the transition of the Pd phase from α to β occurs through units of single grains. However, unfortunately, the grain controllability of previous approaches has been limited to grains exceeding 10 nm in size and simple macroscopic channel structures have only shown monotonic response behavior for a wide concentration range of H2. In this work, for the first time, we found that Pd channels that are precisely grain-controlled show very different H2 sensing behavior. They display dual-switching response behavior with simultaneous variation of the positive and negative response direction within single sensor. The Pd nanopattern channel having smallest grain size/interface among previous works could be fabricated via unique lithographic approaches involving low-energy plasma (Ar+) bombardment. The ultrasmall grain size (5 nm) and narrow interface gap (<2 nm) controlled by Ar+ plasma bombardment enabled both the hydrogen-induced lattice expansion (HILE) (Δ RH2 < 0) and surface electron scattering (Δ RH2 > 0) mechanisms to be simultaneously applied to the single Pd channel, thereby inducing dual-switching response according to the H2 concentration range. In addition, the unique high-aspect-ratio high-resolution morphological characteristics made it possible to achieve highly sensitive H2 detecting performance (limit of detection: 2.5 ppm) without any hysteresis and irreversible performance degradation. These noteworthy new insights are attributed to high-resolution control of the grain size and the interfaces with the Pd nanostructure channel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杳鸢应助搞怪不斜采纳,获得30
刚刚
退而求其次完成签到,获得积分10
1秒前
马冬梅发布了新的文献求助10
1秒前
寒江雪发布了新的文献求助10
2秒前
852应助大波斯菊采纳,获得10
2秒前
2秒前
orixero应助JXL采纳,获得10
3秒前
4秒前
风中的惊蛰完成签到,获得积分10
4秒前
nhscyhy发布了新的文献求助10
5秒前
林登万发布了新的文献求助10
5秒前
水水水完成签到,获得积分10
5秒前
天空之城美完成签到,获得积分10
6秒前
7秒前
8秒前
咬经受搓狐臭空调完成签到,获得积分10
8秒前
8秒前
平常映雁完成签到,获得积分10
9秒前
szx完成签到,获得积分10
9秒前
瑞_应助xiaoyuan采纳,获得10
9秒前
寒江雪完成签到,获得积分20
10秒前
10秒前
如昨完成签到,获得积分10
10秒前
10秒前
八点点完成签到,获得积分10
11秒前
leyellows发布了新的文献求助10
11秒前
大模型应助毛慢慢采纳,获得10
11秒前
123554发布了新的文献求助10
13秒前
supertkeb应助morenmoyan采纳,获得10
13秒前
丰知然应助nhscyhy采纳,获得10
14秒前
糟糕的诗蕾关注了科研通微信公众号
14秒前
八点点发布了新的文献求助200
14秒前
10完成签到,获得积分10
14秒前
lv完成签到,获得积分10
14秒前
开心便当发布了新的文献求助10
15秒前
尹冰之完成签到,获得积分10
15秒前
15秒前
墨白发布了新的文献求助10
15秒前
wty完成签到,获得积分10
16秒前
科研通AI2S应助ruiruirui采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305612
求助须知:如何正确求助?哪些是违规求助? 2939343
关于积分的说明 8493224
捐赠科研通 2613787
什么是DOI,文献DOI怎么找? 1427585
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647916