粒子群优化
全局优化
数学优化
多群优化
算法
反演(地质)
元启发式
计算机科学
模拟退火
非线性系统
元优化
最优化问题
趋同(经济学)
数学
物理
构造盆地
生物
量子力学
古生物学
经济增长
经济
作者
Wenbin Liu,Luo Neng-sheng,Guo Pan,Aijia Ouyang
标识
DOI:10.1142/s021800141859019x
摘要
A chaos particle swarm optimization (CPSO) algorithm based on the chaos operator (CS) is proposed for global optimization problems and parameter inversion of the nonlinear sun shadow model in our study. The CPSO algorithm combines the local search ability of CS and the global search ability of PSO algorithm. The CPSO algorithm can not only solve the global optimization problems effectively, but also address the parameter inversion problems of the date of sun shadow model location successfully. The results of numerical experiment and simulation experiment show that the CPSO algorithm has higher accuracy and faster convergence than the-state-of-the-art techniques. It can effectively improve the computing accuracy and computing efficiency of the global optimization problems, and also provide a novel method to solve the problems of integer parameter inversion in real life.
科研通智能强力驱动
Strongly Powered by AbleSci AI