Incremental correlation of multiple well logs following geologically optimal neighbors

相关性 路径(计算) 稳健性(进化) 动态时间归整 测井 地质学 算法 欧几里德距离 数据挖掘 计算机科学 数学 人工智能 几何学 地球物理学 生物化学 化学 基因 程序设计语言
作者
Xinming Wu,Yunzhi Shi,Sergey Fomel,Fangyu Li
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:6 (3): T713-T722 被引量:8
标识
DOI:10.1190/int-2018-0020.1
摘要

Well-log correlation is a crucial step to construct cross sections in estimating structures between wells and building subsurface models. Manually correlating multiple logs can be highly subjective and labor intensive. We have developed a weighted incremental correlation method to efficiently correlate multiple well logs following a geologically optimal path. In this method, we first automatically compute an optimal path that starts with longer logs and follows geologically continuous structures. Then, we use the dynamic warping technique to sequentially correlate the logs following the path. To avoid potential error propagation with the path, we modify the dynamic warping algorithm to use all the previously correlated logs as references to correlate the current log in the path. During the sequential correlations, we compute the geologic distances between the current log and all of the reference logs. Such distances are proportional to Euclidean distances, but they increase dramatically across discontinuous structures such as faults and unconformities that separate the current log from the reference logs. We also compute correlation confidences to provide quantitative quality control of the correlation results. We use the geologic distances and correlation confidences to weight the references in correlating the current log. By using this weighted incremental correlation method, each log is optimally correlated with all the logs that are geologically closer and are ordered with higher priorities in the path. Hundreds of well logs from the Teapot Dome survey demonstrate the efficiency and robustness of the method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
三岁发布了新的文献求助10
1秒前
田様应助皓民采纳,获得10
3秒前
李健的小迷弟应助lingling采纳,获得10
3秒前
4秒前
李大刚发布了新的文献求助10
4秒前
程院完成签到,获得积分10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
ceeray23应助科研通管家采纳,获得30
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
沉默的尔槐完成签到,获得积分20
5秒前
小马甲应助Jenny采纳,获得10
5秒前
沉默凡梦完成签到,获得积分10
7秒前
7秒前
tomorrow发布了新的文献求助10
7秒前
yznfly应助123321321345采纳,获得30
7秒前
ike_1991完成签到,获得积分10
8秒前
9秒前
10秒前
fay1987完成签到,获得积分10
10秒前
冯微微完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
喵喵发布了新的文献求助10
14秒前
14秒前
totoo2021完成签到,获得积分10
14秒前
无花果应助三岁采纳,获得10
15秒前
白开水完成签到,获得积分10
15秒前
xuan发布了新的文献求助10
17秒前
皓民发布了新的文献求助10
17秒前
18秒前
小鱼奈子完成签到,获得积分10
19秒前
无私可乐给无私可乐的求助进行了留言
20秒前
调皮的曼安完成签到,获得积分10
21秒前
21秒前
残梦蝶完成签到,获得积分10
22秒前
陌上人发布了新的文献求助10
23秒前
钻石发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951145
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082681
捐赠科研通 3226970
什么是DOI,文献DOI怎么找? 1784113
邀请新用户注册赠送积分活动 868202
科研通“疑难数据库(出版商)”最低求助积分说明 801089