Fault Diagnosis of a Helical Gearbox Based on an Adaptive Empirical Wavelet Transform in Combination with a Spectral Subtraction Method

噪音(视频) 断层(地质) 小波 信号(编程语言) 小波变换 滤波器(信号处理) 计算机科学 模式识别(心理学) 人工智能 降噪 特征(语言学) 特征提取 频带 工程类 电子工程 计算机视觉 电信 带宽(计算) 地震学 哲学 地质学 程序设计语言 图像(数学) 语言学
作者
Peng Wang,Chang-Myung Lee
出处
期刊:Applied sciences [MDPI AG]
卷期号:9 (8): 1696-1696 被引量:13
标识
DOI:10.3390/app9081696
摘要

Fault characteristic extraction is attracting a great deal of attention from researchers for the fault diagnosis of rotating machinery. Generally, when a gearbox is damaged, accurate identification of the side-band features can be used to detect the condition of the machinery equipment to reduce financial losses. However, the side-band feature of damaged gears that are constantly disturbed by strong jamming is embedded in the background noise. In this paper, a hybrid signal-processing method is proposed based on a spectral subtraction (SS) denoising algorithm combined with an empirical wavelet transform (EWT) to extract the side-band feature of gear faults. Firstly, SS is used to estimate the real-time noise information, which is used to enhance the fault signal of the helical gearbox from a vibration signal with strong noise disturbance. The empirical wavelet transform can extract amplitude-modulated/frequency-modulated (AM-FM) components of a signal using different filter bands that are designed in accordance with the signal properties. The fault signal is obtained by building a flexible gear for a helical gearbox with ADAMS software. The experiment shows the feasibility and availability of the multi-body dynamics model. The spectral subtraction-based adaptive empirical wavelet transform (SS-AEWT) method was applied to estimate the gear side-band feature for different tooth breakages and the strong background noise. The verification results show that the proposed method gives a clearer indication of gear fault characteristics with different tooth breakages and the different signal-noise ratio (SNR) than the conventional EMD and LMD methods. Finally, the fault characteristic frequency of a damaged gear suggests that the proposed SS-AEWT method can accurately and reliably diagnose faults of a gearbox.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nannan完成签到,获得积分20
刚刚
刚刚
刚刚
渤大小mn发布了新的文献求助10
刚刚
1秒前
1秒前
starrism发布了新的文献求助10
1秒前
隐形曼青应助谦让的含海采纳,获得10
1秒前
沐沐完成签到,获得积分10
1秒前
云溪发布了新的文献求助10
2秒前
Dimples完成签到,获得积分10
2秒前
2秒前
dong发布了新的文献求助10
2秒前
今后应助老毛采纳,获得10
2秒前
3秒前
cuicy完成签到,获得积分10
3秒前
hdbys完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
可靠的西牛关注了科研通微信公众号
4秒前
万能图书馆应助sss采纳,获得10
4秒前
张英歌发布了新的文献求助10
5秒前
算命先生完成签到,获得积分10
5秒前
可爱的函函应助王女士采纳,获得10
5秒前
nannan发布了新的文献求助10
5秒前
5秒前
Ellen完成签到,获得积分10
6秒前
善学以致用应助fun采纳,获得10
6秒前
科研通AI6应助鳗鱼觅珍采纳,获得30
6秒前
Hello应助夏安采纳,获得10
6秒前
yeoyoo驳回了mono应助
6秒前
123完成签到,获得积分20
6秒前
7秒前
张肥肥发布了新的文献求助10
7秒前
7秒前
cuicy发布了新的文献求助10
7秒前
7秒前
领导范儿应助脱贫攻坚采纳,获得10
8秒前
科研通AI6应助钱钱采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853