Fault Diagnosis of a Helical Gearbox Based on an Adaptive Empirical Wavelet Transform in Combination with a Spectral Subtraction Method

噪音(视频) 断层(地质) 小波 信号(编程语言) 小波变换 滤波器(信号处理) 计算机科学 模式识别(心理学) 人工智能 降噪 特征(语言学) 特征提取 频带 工程类 电子工程 计算机视觉 电信 带宽(计算) 地震学 哲学 地质学 程序设计语言 图像(数学) 语言学
作者
Peng Wang,Chang-Myung Lee
出处
期刊:Applied sciences [MDPI AG]
卷期号:9 (8): 1696-1696 被引量:13
标识
DOI:10.3390/app9081696
摘要

Fault characteristic extraction is attracting a great deal of attention from researchers for the fault diagnosis of rotating machinery. Generally, when a gearbox is damaged, accurate identification of the side-band features can be used to detect the condition of the machinery equipment to reduce financial losses. However, the side-band feature of damaged gears that are constantly disturbed by strong jamming is embedded in the background noise. In this paper, a hybrid signal-processing method is proposed based on a spectral subtraction (SS) denoising algorithm combined with an empirical wavelet transform (EWT) to extract the side-band feature of gear faults. Firstly, SS is used to estimate the real-time noise information, which is used to enhance the fault signal of the helical gearbox from a vibration signal with strong noise disturbance. The empirical wavelet transform can extract amplitude-modulated/frequency-modulated (AM-FM) components of a signal using different filter bands that are designed in accordance with the signal properties. The fault signal is obtained by building a flexible gear for a helical gearbox with ADAMS software. The experiment shows the feasibility and availability of the multi-body dynamics model. The spectral subtraction-based adaptive empirical wavelet transform (SS-AEWT) method was applied to estimate the gear side-band feature for different tooth breakages and the strong background noise. The verification results show that the proposed method gives a clearer indication of gear fault characteristics with different tooth breakages and the different signal-noise ratio (SNR) than the conventional EMD and LMD methods. Finally, the fault characteristic frequency of a damaged gear suggests that the proposed SS-AEWT method can accurately and reliably diagnose faults of a gearbox.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曲书文完成签到,获得积分10
1秒前
3秒前
3秒前
许中原完成签到,获得积分10
3秒前
LY完成签到,获得积分10
5秒前
Nature完成签到,获得积分10
6秒前
6秒前
五一完成签到,获得积分10
8秒前
LN发布了新的文献求助10
8秒前
许中原发布了新的文献求助10
9秒前
香蕉觅云应助11采纳,获得10
10秒前
狂野的锦程完成签到,获得积分10
11秒前
13秒前
嘎嘎嘎发布了新的文献求助10
17秒前
爆米花应助rush采纳,获得30
17秒前
勤奋西牛完成签到,获得积分10
19秒前
Calvin-funsom完成签到,获得积分10
24秒前
咖啡豆应助嘎嘎嘎采纳,获得10
28秒前
科研通AI2S应助嘎嘎嘎采纳,获得10
28秒前
29秒前
29秒前
下次一定发布了新的文献求助10
32秒前
Singularity应助LN采纳,获得10
32秒前
rush发布了新的文献求助30
35秒前
11发布了新的文献求助10
37秒前
46秒前
科研通AI2S应助啊呜采纳,获得10
47秒前
橘猫完成签到 ,获得积分10
49秒前
卡戎529发布了新的文献求助10
49秒前
wby发布了新的文献求助10
51秒前
52秒前
55秒前
rush完成签到,获得积分10
56秒前
英俊的铭应助baby的跑男采纳,获得10
56秒前
Akim应助科研通管家采纳,获得10
57秒前
情怀应助科研通管家采纳,获得10
57秒前
打打应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
上官若男应助科研通管家采纳,获得10
57秒前
无花果应助科研通管家采纳,获得10
58秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791830
捐赠科研通 2445993
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079