Fault Diagnosis of a Helical Gearbox Based on an Adaptive Empirical Wavelet Transform in Combination with a Spectral Subtraction Method

噪音(视频) 断层(地质) 小波 信号(编程语言) 小波变换 滤波器(信号处理) 计算机科学 模式识别(心理学) 人工智能 降噪 特征(语言学) 特征提取 频带 工程类 电子工程 计算机视觉 电信 带宽(计算) 地震学 哲学 地质学 程序设计语言 图像(数学) 语言学
作者
Peng Wang,Chang-Myung Lee
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:9 (8): 1696-1696 被引量:13
标识
DOI:10.3390/app9081696
摘要

Fault characteristic extraction is attracting a great deal of attention from researchers for the fault diagnosis of rotating machinery. Generally, when a gearbox is damaged, accurate identification of the side-band features can be used to detect the condition of the machinery equipment to reduce financial losses. However, the side-band feature of damaged gears that are constantly disturbed by strong jamming is embedded in the background noise. In this paper, a hybrid signal-processing method is proposed based on a spectral subtraction (SS) denoising algorithm combined with an empirical wavelet transform (EWT) to extract the side-band feature of gear faults. Firstly, SS is used to estimate the real-time noise information, which is used to enhance the fault signal of the helical gearbox from a vibration signal with strong noise disturbance. The empirical wavelet transform can extract amplitude-modulated/frequency-modulated (AM-FM) components of a signal using different filter bands that are designed in accordance with the signal properties. The fault signal is obtained by building a flexible gear for a helical gearbox with ADAMS software. The experiment shows the feasibility and availability of the multi-body dynamics model. The spectral subtraction-based adaptive empirical wavelet transform (SS-AEWT) method was applied to estimate the gear side-band feature for different tooth breakages and the strong background noise. The verification results show that the proposed method gives a clearer indication of gear fault characteristics with different tooth breakages and the different signal-noise ratio (SNR) than the conventional EMD and LMD methods. Finally, the fault characteristic frequency of a damaged gear suggests that the proposed SS-AEWT method can accurately and reliably diagnose faults of a gearbox.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yikeshu完成签到,获得积分10
刚刚
Zoe完成签到 ,获得积分10
1秒前
3秒前
星辰大海应助do0采纳,获得10
4秒前
tt完成签到 ,获得积分10
5秒前
浅辰完成签到,获得积分10
6秒前
大气萤完成签到,获得积分20
7秒前
7秒前
我ppp完成签到 ,获得积分10
7秒前
8秒前
易燃物品完成签到,获得积分10
8秒前
Hello应助Ther采纳,获得10
10秒前
CherylZhao完成签到,获得积分10
11秒前
Galato发布了新的文献求助10
12秒前
颜愫完成签到,获得积分10
12秒前
安详向日葵完成签到 ,获得积分10
13秒前
拼搏的白云完成签到,获得积分10
13秒前
852应助hhh采纳,获得10
13秒前
李白白白完成签到,获得积分10
13秒前
王手完成签到,获得积分10
13秒前
14秒前
一人完成签到,获得积分10
15秒前
do0完成签到,获得积分10
16秒前
yar应助xlz110采纳,获得10
16秒前
NexusExplorer应助落寞凌波采纳,获得10
18秒前
量子星尘发布了新的文献求助10
21秒前
123完成签到 ,获得积分10
21秒前
哈哈呵完成签到,获得积分10
21秒前
21秒前
Rylee完成签到,获得积分10
21秒前
Jiro完成签到,获得积分10
23秒前
我ppp发布了新的文献求助60
24秒前
25秒前
纳米酶催化完成签到,获得积分10
26秒前
26秒前
John完成签到,获得积分10
26秒前
李小强完成签到,获得积分10
27秒前
28秒前
31秒前
落寞凌波发布了新的文献求助10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029