醛固酮
内分泌学
内科学
原发性醛固酮增多症
醛固酮增多症
生物
盐皮质激素
离子霉素
肾上腺皮质
钙
钙代谢
醛固酮合酶
医学
肾素-血管紧张素系统
血压
作者
Xin Gao,Yuto Yamazaki,Yuta Tezuka,Yoshiaki Onodera,Hiroko Ogata,Kei Omata,Ryo Morimoto,Yasuhiro Nakamura,Fumitoshi Satoh,Hironobu Sasano
标识
DOI:10.1016/j.jsbmb.2019.105434
摘要
Intracellular calcium (Ca) levels play pivotal roles in aldosterone biosynthesis. Several somatic mutations of ion channels associated with aldosterone over-production were reported to result in over-inflow of Ca ion. Recently, the main regulators of extracellular Ca including VDR, CaSR and PTH1R were also reported to regulate steroidogenesis including aldosterone production. Therefore, not only intracellular but also extracellular Ca levels could regulate aldosterone biosynthesis. In addition, primary aldosteronism (PA) is clinically associated with not only more frequent cardiovascular events but also secondary metabolic disorders including abnormal calcium metabolism, osteoporosis and others. However, the details of Ca metabolic abnormalities associated with, including the potential correlation between those abnormalities and aldosterone overproduction, have remained virtually unknown. Therefore, in this study, we first immunolocalized Ca metabolism-related receptors (CaSR, VDR and PTH1R) in normal adrenal glands (NAs), aldosterone-producing adenomas (APAs) and cortisol-producing adenoma (CPA). We then compared the findings with clinicopathological parameters of these patients and the patterns of KCNJ5 somatic mutation of the tumors among APA patients. In vitro study was also performed to further explore the potential effects of extracellular Ca, PTH, Vitamin D and ionophore on aldosterone production. Ca metabolism-related receptors were predominantly localized in aldosterone-producing cells (ZG and APA) in both immunohistochemistry and qRT-PCR analysis. CYP11B2 mRNA was significantly increased by CaCl2 treatment and further by adding ionophore. All the key enzymes related to aldosterone and cortisol biosynthesis including CYP11B2, CYP17A1 and CYP11B1 were upregulated by PTH treatment in this model and PTH could serve as a co-stimulator of ANG II to increase CYP11B2 expression. VDR mRNA levels were positively correlated with those of CYP11B2, CYP17A1 and CYP11B1 in APA tumor tissues and significantly higher in KCNJ5 mutated APAs than wild type. CYP11B1 levels were also significantly increased by VitD treatment. PTH1R mRNA levels were positively correlated with those of CYP17A1 and CYP11B1, both involved in cortisol production. In addition, the status of VDR was correlated with TRACP-5b levels, and that of PTH1R with serum Ca levels as well as urinary Ca excretion, respectively. Results of our present study did firstly demonstrate that aldosterone-producing cells were more sensitive to the fluctuations of extracellular Ca levels and Ca metabolism could directly influence steroidogenesis, especially "neoplastic" co-secretion of aldosterone and cortisol in APA patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI